(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over $\mathbb{Z}$, which takes one 10-tuple of invariants to the other.
Keywords: coisotropic subspace; direct sum decomposition; Poisson vector space; presymplectic vector space.
@article{SIGMA_2015_11_a71,
     author = {Jonathan Lorand and Alan Weinstein},
     title = {(Co)isotropic {Pairs} in {Poisson} and {Presymplectic} {Vector} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a71/}
}
TY  - JOUR
AU  - Jonathan Lorand
AU  - Alan Weinstein
TI  - (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a71/
LA  - en
ID  - SIGMA_2015_11_a71
ER  - 
%0 Journal Article
%A Jonathan Lorand
%A Alan Weinstein
%T (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a71/
%G en
%F SIGMA_2015_11_a71
Jonathan Lorand; Alan Weinstein. (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a71/

[1] Atiyah M. F., “On the Krull–Schmidt theorem with application to sheaves”, Bull. Soc. Math. France, 84 (1956), 307–317 | MR | Zbl

[2] Benenti S., Tulczyjew W., “Symplectic linear relations”, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (5), 5 (1981), 71–140 | MR

[3] Brenner S., “Endomorphism algebras of vector spaces with distinguished sets of subspaces”, J. Algebra, 6 (1967), 100–114 | DOI | MR | Zbl

[4] Etingof P., Golberg O., Hensel S., Liu T., Schwendner A., Vaintrob D., Yudovina E., Introduction to representation theory, Lecture notes, http://www-math.mit.edu/ẽtingof/replect.pdf | MR

[5] Gel'fand I. M., Ponomarev V. A., “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space”, Hilbert Space Operators and Operator Algebras, Proc. Internat. Conf. (Tihany, 1970), Colloq. Math. Soc. János Bolyai, 5, North-Holland, Amsterdam, 1972, 163–237 | MR

[6] Gutt J., “Normal forms for symplectic matrices”, Port. Math., 71 (2014), 109–139, arXiv: 1307.2403 | DOI | MR | Zbl

[7] Li-Bland D., Weinstein A., “Selective categories and linear canonical relations”, SIGMA, 10 (2014), 100, 31 pp., arXiv: 1401.7302 | DOI | MR | Zbl

[8] Lorand J., Classifying linear canonical relations, arXiv: 1508.04568

[9] Lorand J., Weinstein A., Coisotropic pairs, arXiv: 1408.5620

[10] Lorand J., Weinstein A., Decomposition of (co)isotropic relations, in preparation

[11] Roman S., Advanced linear algebra, Graduate Texts in Mathematics, 135, 3rd ed., Springer, New York, 2008 | DOI | MR | Zbl

[12] Sergeichuk V. V., “Classification of pairs of subspaces in spaces with scalar product”, Ukrainian Math. J., 42 (1990), 487–491 | DOI | MR

[13] Towber J., “Linear relations”, J. Algebra, 19 (1971), 1–20 | DOI | MR | Zbl

[14] Weinstein A., “Coisotropic calculus and Poisson groupoids”, J. Math. Soc. Japan, 40 (1988), 705–727 | DOI | MR | Zbl

[15] Weinstein A., “A note on the Wehrheim–Woodward category”, J. Geom. Mech., 3 (2011), 507–515, arXiv: 1012.0105 | DOI | MR | Zbl

[16] Weinstein A., Categories of (co)isotropic linear relations, arXiv: 1503.06240

[17] Williamson J., “On the normal forms of linear canonical transformations in dynamics”, Amer. J. Math., 59 (1937), 599–617 | DOI | MR