Path Integrals on Euclidean Space Forms
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, based on the reproducing property of this space, is proposed. In the $\mathbb{R}^n$ case the obtained results coincide with the known expressions.
Keywords: path integrals; holomorphic quantization; space forms; reproducing kernel Hilbert spaces.
@article{SIGMA_2015_11_a70,
     author = {Guillermo Capobianco and Walter Reartes},
     title = {Path {Integrals} on {Euclidean} {Space} {Forms}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a70/}
}
TY  - JOUR
AU  - Guillermo Capobianco
AU  - Walter Reartes
TI  - Path Integrals on Euclidean Space Forms
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a70/
LA  - en
ID  - SIGMA_2015_11_a70
ER  - 
%0 Journal Article
%A Guillermo Capobianco
%A Walter Reartes
%T Path Integrals on Euclidean Space Forms
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a70/
%G en
%F SIGMA_2015_11_a70
Guillermo Capobianco; Walter Reartes. Path Integrals on Euclidean Space Forms. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a70/

[1] Casimir H. B. G., Rotation of a rigid body in quantum mechanics, Ph.D. Thesis, Rijksuniversiteit te Leiden, 1931

[2] Chaichian M., Demichev A., Path integrals in physics, v. I, Series in Mathematical and Computational Physics, Stochastic processes and quantum mechanics, Institute of Physics Publishing, Bristol, 2001 | MR | Zbl

[3] DeWitt B. S., “Dynamical theory in curved spaces. I: A review of the classical and quantum action principles”, Rev. Mod. Phys., 29 (1957), 377–397 | DOI | MR | Zbl

[4] Ellis G. F. R., “Topology and cosmology”, Gen. Relativity Gravitation, 2 (1971), 7–21 | DOI | MR | Zbl

[5] Faddeev L., “Elementary introduction to quantum field theory”, Quantum Fields and Strings: a Course for Mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, eds. P. Deligne, P. Etingof, D. S. Fred, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, E. , Amer. Math. Soc., Providence, RI, 1999, 513–550 | MR | Zbl

[6] Gorbunov I. V., Lyakhovich S. L., Sharapov A. A., “Wick quantization of cotangent bundles over Riemannian manifolds”, J. Geom. Phys., 53 (2005), 98–121, arXiv: hep-th/0401022 | DOI | MR | Zbl

[7] Grigor'yan A., “Heat kernels on weighted manifolds and applications”, The Ubiquitous Heat Kernel, Contemp. Math., 398, eds. J. Jorgenson, L. Walling, Amer. Math. Soc., Providence, RI, 2006, 93–191 | DOI | MR | Zbl

[8] Grigor'yan A., Heat kernel and analysis on manifolds, AMS Studies in Advanced Mathematics, 47, Amer. Math. Soc., Providence, RI, 2009 | MR | Zbl

[9] Guillemin V., Stenzel M., “Grauert tubes and the homogeneous Monge–Ampère equation”, J. Differential Geom., 34 (1991), 561–570 | MR | Zbl

[10] Guillemin V., Stenzel M., “Grauert tubes and the homogeneous Monge–Ampère equation, II”, J. Differential Geom., 35 (1992), 627–641 | MR | Zbl

[11] Hall B. C., “The Segal–Bargmann “coherent state” transform for compact Lie groups”, J. Funct. Anal., 122 (1994), 103–151 | DOI | MR | Zbl

[12] Hall B. C., “The inverse Segal–Bargmann transform for compact Lie groups”, J. Funct. Anal., 143 (1997), 98–116 | DOI | MR | Zbl

[13] Hall B. C., “Holomorphic methods in analysis and mathematical physics”, First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998), Contemp. Math., 260, eds. S. Pérez-Esteva, C. Vilegas-Blas, Amer. Math. Soc., Providence, RI, 2000, 1–59, arXiv: quant-ph/9912054 | DOI | MR | Zbl

[14] Hall B. C., “Harmonic analysis with respect to heat kernel measure”, Bull. Amer. Math. Soc., 38 (2001), 43–78, arXiv: quant-ph/0006037 | DOI | MR | Zbl

[15] Hall B. C., Kirwin W. D., “Adapted complex structures and the geodesic flow”, Math. Ann., 350 (2011), 455–474, arXiv: 0811.3083 | DOI | MR | Zbl

[16] Hall B. C., Mitchell J. J., “The Segal–Bargmann transform for noncompact symmetric spaces of the complex type”, J. Funct. Anal., 227 (2005), 338–371, arXiv: quant-ph/0409118 | DOI | MR | Zbl

[17] Kleinert H., “Quantum mechanics and path integrals in spaces with curvature and torsion”, Modern Phys. Lett. A, 4 (1989), 2329–2337 | DOI | MR

[18] Kleinert H., “Path integral on spherical surfaces in $D$ dimensions and on group spaces”, Phys. Lett. B, 236 (1990), 315–320 | DOI | MR

[19] Kleinert H., Path integrals in quantum mechanics, statistics, polymer physics, and financial markets, 3rd ed., World Sci. Publ. Co., Inc., River Edge, NJ, 2004 | DOI | MR | Zbl

[20] Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, Interscience Tracts in Pure and Applied Mathematics, 15, John Wiley Sons, Inc., New York–London–Sydney, 1969 | MR

[21] Kowalski K., Rembieliński J., “Quantum mechanics on a sphere and coherent states”, J. Phys. A: Math. Gen., 33 (2000), 6035–6048 | DOI | MR | Zbl

[22] Kowalski K., Rembieliński J., Papaloucas L. C., “Coherent states for a quantum particle on a circle”, J. Phys. A: Math. Gen., 29 (1996), 4149–4167, arXiv: quant-ph/9801029 | DOI | MR | Zbl

[23] Kühnel W., Differential geometry. Curves – surfaces – manifolds, Student Mathematical Library, 16, Amer. Math. Soc., Providence, RI, 2002 | MR

[24] Lempert L., Szőke R., “Global solutions of the homogeneous complex Monge–Ampère equation and complex structures on the tangent bundle of Riemannian manifolds”, Math. Ann., 290 (1991), 689–712 | DOI | MR | Zbl

[25] Levin J., “Topology and the cosmic microwave background”, Phys. Rep., 365 (2002), 251–333, arXiv: gr-qc/0108043 | DOI | MR | Zbl

[26] Levin J., Scannapieco E., de Gasperis G., Silk J., Barrow J. D., “How the universe got its spots”, Phys. Rev. D, 58 (1998), 123006, 14 pp., arXiv: astro-ph/9807206 | DOI | MR

[27] Levin J., Scannapieco E., Silk J., Is the universe infinite or is it just really big?, Phys. Rev. D, 58 (1998), 103516, 5 pp., arXiv: astro-ph/9802021 | DOI | MR

[28] Levin J., Scannapieco E., Silk J., “The topology of the universe: the biggest manifold of them all”, Classical Quantum Gravity, 15 (1998), 2689–2697, arXiv: gr-qc/9803026 | DOI | MR | Zbl

[29] McMullen P., Schulte E., Abstract regular polytopes, Encyclopedia of Mathematics and its Applications, 92, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl

[30] Mostafazadeh A., “Scalar curvature factor in the Schrödinger equation and scattering on a curved surface”, Phys. Rev. A, 54 (1996), 1165–1170, arXiv: hep-th/9602095 | DOI | MR

[31] Stenzel M. B., “The Segal–Bargmann transform on a symmetric space of compact type”, J. Funct. Anal., 165 (1999), 44–58 | DOI | MR | Zbl

[32] Szőke R., “Complex structures on tangent bundles of Riemannian manifolds”, Math. Ann., 291 (1991), 409–428 | DOI | MR | Zbl

[33] van Leeuwen S., The Segal–Bargmann transform and its generalizations, Master's thesis, Universiteit Utrecht, 2009

[34] Wolf J. A., Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011 | MR | Zbl

[35] Zinn-Justin J., Path integrals in quantum mechanics, Oxford Graduate Texts, Oxford University Press, Oxford, 2005 | MR | Zbl