Ambiguities in a Problem in Planar Geodesy
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a study of a problem in geodesy with methods from complex algebraic geometry: for a fixed number of measure points and target points at unknown position in the Euclidean plane, we study the problem of determining their relative position when the viewing angles between target points seen from measure points are known. In particular, we determine all situations in which there is more than one solution.
Keywords: surveying; structure and motion problem; Gale duality.
@article{SIGMA_2015_11_a7,
     author = {Josef Schicho and Matteo Gallet},
     title = {Ambiguities in {a~Problem} in {Planar} {Geodesy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a7/}
}
TY  - JOUR
AU  - Josef Schicho
AU  - Matteo Gallet
TI  - Ambiguities in a Problem in Planar Geodesy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a7/
LA  - en
ID  - SIGMA_2015_11_a7
ER  - 
%0 Journal Article
%A Josef Schicho
%A Matteo Gallet
%T Ambiguities in a Problem in Planar Geodesy
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a7/
%G en
%F SIGMA_2015_11_a7
Josef Schicho; Matteo Gallet. Ambiguities in a Problem in Planar Geodesy. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a7/

[1] Åström K., Oskarsson M., “Solutions and ambiguities of the structure and motion problem for 1D retinal vision”, J. Math. Imaging Vision, 12 (2000), 121–135 | DOI | MR

[2] Carlsson S., Weinshall D., “Dual computation of projective shape and camera position from multiple images”, Int. J. Computer Vision, 27 (1998), 227–241 | DOI

[3] Cox D. A., “Equations of parametric curves and surfaces via syzygies”, Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering (South Hadley, MA, 2000), Contemp. Math., 286, Amer. Math. Soc., Providence, RI, 2001, 1–20, arXiv: math.AG/0010107 | DOI | MR | Zbl

[4] Dolgachev I. V., Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge, 2012 | DOI | MR | Zbl

[5] Eisenbud D., Harris J., “On varieties of minimal degree (a centennial account)”, Algebraic geometry (Bowdoin, Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Amer. Math. Soc., Providence, RI, 1987, 3–13 | DOI | MR

[6] Eisenbud D., Popescu S., “The projective geometry of the {G}ale transform”, J. Algebra, 230 (2000), 127–173, arXiv: math.AG/9807127 | DOI | MR | Zbl

[7] Manin Yu. I., Cubic forms. Algebra, geometry, arithmetic, North-Holland Mathematical Library, 4, 2nd ed., North-Holland Publishing Co., Amsterdam, 1986 | MR | Zbl

[8] Mooers R. L., Finding your way in the outdoors: compass navigation, map reading, route finding, weather forecasting, E.P. Dutton, 1972

[9] Oskarsson M., Solution and ambiguities for structure and motion problems, Ph. D. Thesis, Lund University, 2002

[10] Quan L., “Two-way ambiguity in 2D projective reconstruction from three uncalibrated 1D images”, IEEE Trans. Pattern Analysis Mach. Int., 23 (2001), 212–216 | DOI