Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Our purpose is to use a Darboux homogenous derivative to understand the harmonic maps with values in homogeneous space. We present a characterization of these harmonic maps from the geometry of homogeneous space. Furthermore, our work covers all type of invariant geometry in homogeneous space.
Keywords: homogeneous space; harmonic maps; Darboux derivative.
@article{SIGMA_2015_11_a68,
     author = {Alexandre J. Santana and Sim\~ao N. Stelmastchuk},
     title = {Harmonic {Maps} into {Homogeneous} {Spaces} {According} to a {Darboux} {Homogeneous} {Derivative}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a68/}
}
TY  - JOUR
AU  - Alexandre J. Santana
AU  - Simão N. Stelmastchuk
TI  - Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a68/
LA  - en
ID  - SIGMA_2015_11_a68
ER  - 
%0 Journal Article
%A Alexandre J. Santana
%A Simão N. Stelmastchuk
%T Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a68/
%G en
%F SIGMA_2015_11_a68
Alexandre J. Santana; Simão N. Stelmastchuk. Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a68/

[1] Abe N., Hasegawa K., “An affine submersion with horizontal distribution and its applications”, Differential Geom. Appl., 14 (2001), 235–250 | DOI | MR | Zbl

[2] Burstall F. E., Rawnsley J. H., Twistor theory for Riemannian symmetric spaces. With applications to harmonic maps of Riemann surfaces, Lecture Notes in Math., 1424, Springer-Verlag, Berlin, 1990 | DOI | MR | Zbl

[3] Catuogno P., “A geometric Itô formula”, Mat. Contemp., 33, 2007, 85–99 | MR | Zbl

[4] Dai Y.-J., Shoji M., Urakawa H., “Harmonic maps into Lie groups and homogeneous spaces”, Differential Geom. Appl., 7 (1997), 143–160 | DOI | MR | Zbl

[5] Dorfmeister J. F., Inoguchi J.-I., Kobayashi S., A loop group method for harmonic maps into Lie groups, arXiv: 1405.0333

[6] Émery M., Stochastic calculus in manifolds, Universitext, Springer-Verlag, Berlin, 1989 | DOI | MR

[7] Fernandes M. A. N., San Martin L. A. B., “Fisher information and $\alpha$-connections for a class of transformational models”, Differential Geom. Appl., 12 (2000), 165–184 | DOI | MR | Zbl

[8] Fernandes M. A. N., San Martin L. A. B., “Geometric proprieties of invariant connections on ${\rm SL}(n,{\mathbb R})/{\rm SO}(n)$”, J. Geom. Phys., 47 (2003), 369–377 | DOI | MR | Zbl

[9] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York–London, 1978 | MR | Zbl

[10] Higaki M., “Actions of loop groups on the space of harmonic maps into reductive homogeneous spaces”, J. Math. Sci. Univ. Tokyo, 5 (1998), 401–421 | MR | Zbl

[11] Khemar I., Elliptic integrable systems: a comprehensive geometric interpretation, Mem. Amer. Math. Soc., 219, 2012, x+217 pp., arXiv: 0904.1412 | DOI | MR

[12] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, II, Interscience Publishers, New York–London, 1963 | MR | Zbl

[13] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl

[14] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl

[15] Stelmastchuk S. N., “The Itô exponential on Lie groups”, Int. J. Contemp. Math. Sci., 8 (2013), 307–326, arXiv: 1106.5637 | MR | Zbl

[16] Uhlenbeck K., “Harmonic maps into Lie groups: classical solutions of the chiral model”, J. Differential Geom., 30 (1989), 1–50 | MR | Zbl

[17] Urakawa H., “Biharmonic maps into compact Lie groups and integrable systems”, Hokkaido Math. J., 43 (2014), 73–103, arXiv: 0910.0692 | DOI | MR | Zbl

[18] Urakawa H., “Biharmonic maps into symmetric spaces and integrable systems”, Hokkaido Math. J., 43 (2014), 105–136, arXiv: 1101.3152 | DOI | MR | Zbl