@article{SIGMA_2015_11_a68,
author = {Alexandre J. Santana and Sim\~ao N. Stelmastchuk},
title = {Harmonic {Maps} into {Homogeneous} {Spaces} {According} to a {Darboux} {Homogeneous} {Derivative}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a68/}
}
TY - JOUR AU - Alexandre J. Santana AU - Simão N. Stelmastchuk TI - Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a68/ LA - en ID - SIGMA_2015_11_a68 ER -
%0 Journal Article %A Alexandre J. Santana %A Simão N. Stelmastchuk %T Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a68/ %G en %F SIGMA_2015_11_a68
Alexandre J. Santana; Simão N. Stelmastchuk. Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a68/
[1] Abe N., Hasegawa K., “An affine submersion with horizontal distribution and its applications”, Differential Geom. Appl., 14 (2001), 235–250 | DOI | MR | Zbl
[2] Burstall F. E., Rawnsley J. H., Twistor theory for Riemannian symmetric spaces. With applications to harmonic maps of Riemann surfaces, Lecture Notes in Math., 1424, Springer-Verlag, Berlin, 1990 | DOI | MR | Zbl
[3] Catuogno P., “A geometric Itô formula”, Mat. Contemp., 33, 2007, 85–99 | MR | Zbl
[4] Dai Y.-J., Shoji M., Urakawa H., “Harmonic maps into Lie groups and homogeneous spaces”, Differential Geom. Appl., 7 (1997), 143–160 | DOI | MR | Zbl
[5] Dorfmeister J. F., Inoguchi J.-I., Kobayashi S., A loop group method for harmonic maps into Lie groups, arXiv: 1405.0333
[6] Émery M., Stochastic calculus in manifolds, Universitext, Springer-Verlag, Berlin, 1989 | DOI | MR
[7] Fernandes M. A. N., San Martin L. A. B., “Fisher information and $\alpha$-connections for a class of transformational models”, Differential Geom. Appl., 12 (2000), 165–184 | DOI | MR | Zbl
[8] Fernandes M. A. N., San Martin L. A. B., “Geometric proprieties of invariant connections on ${\rm SL}(n,{\mathbb R})/{\rm SO}(n)$”, J. Geom. Phys., 47 (2003), 369–377 | DOI | MR | Zbl
[9] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York–London, 1978 | MR | Zbl
[10] Higaki M., “Actions of loop groups on the space of harmonic maps into reductive homogeneous spaces”, J. Math. Sci. Univ. Tokyo, 5 (1998), 401–421 | MR | Zbl
[11] Khemar I., Elliptic integrable systems: a comprehensive geometric interpretation, Mem. Amer. Math. Soc., 219, 2012, x+217 pp., arXiv: 0904.1412 | DOI | MR
[12] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, II, Interscience Publishers, New York–London, 1963 | MR | Zbl
[13] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl
[14] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl
[15] Stelmastchuk S. N., “The Itô exponential on Lie groups”, Int. J. Contemp. Math. Sci., 8 (2013), 307–326, arXiv: 1106.5637 | MR | Zbl
[16] Uhlenbeck K., “Harmonic maps into Lie groups: classical solutions of the chiral model”, J. Differential Geom., 30 (1989), 1–50 | MR | Zbl
[17] Urakawa H., “Biharmonic maps into compact Lie groups and integrable systems”, Hokkaido Math. J., 43 (2014), 73–103, arXiv: 0910.0692 | DOI | MR | Zbl
[18] Urakawa H., “Biharmonic maps into symmetric spaces and integrable systems”, Hokkaido Math. J., 43 (2014), 105–136, arXiv: 1101.3152 | DOI | MR | Zbl