@article{SIGMA_2015_11_a67,
author = {Emmanuel Paul and Jean-Pierre Ramis},
title = {Dynamics on {Wild} {Character} {Varieties}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a67/}
}
Emmanuel Paul; Jean-Pierre Ramis. Dynamics on Wild Character Varieties. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a67/
[1] Babbitt D. G., Varadarajan V. S., “Formal reduction theory of meromorphic differential equations: a group theoretic view”, Pacific J. Math., 109 (1983), 1–80 | DOI | MR | Zbl
[2] Balser W., Jurkat W. B., Lutz D. A., “Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations”, J. Math. Anal. Appl., 71 (1979), 48–94 | DOI | MR | Zbl
[3] Boalch P., “Stokes matrices, Poisson Lie groups and Frobenius manifolds”, Invent. Math., 146 (2001), 479–506, arXiv: math.DG/0011062 | DOI | MR | Zbl
[4] Boalch P., “Symplectic manifolds and isomonodromic deformations”, Adv. Math., 163 (2001), 137–205 | DOI | MR | Zbl
[5] Boalch P., “$G$-bundles, isomonodromy, and quantum Weyl groups”, Int. Math. Res. Not., 2002 (2002), 1129–1166, arXiv: math.DG/0108152 | DOI | MR | Zbl
[6] Boalch P., “Through the analytic Halo: fission via irregular singularities”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2669–2684, arXiv: 1305.6465 | DOI | MR | Zbl
[7] Boalch P., “Geometry and braiding of Stokes data; fission and wild character varieties”, Ann. of Math., 179 (2014), 301–365, arXiv: 1111.6228 | DOI | MR | Zbl
[8] Boalch P., Wild character varieties, points on the Riemann sphere and Calabi's examples, arXiv: 1501.00930
[9] Brown R., “From groups to groupoids: a brief survey”, Bull. London Math. Soc., 19 (1987), 113–134 | DOI | MR | Zbl
[10] Cantat S., Loray F., “Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2927–2978 | DOI | MR | Zbl
[11] Casale G., “Une preuve galoisienne de l'irréductibilité au sens de Nishioka–Umemura de la première équation de Painlevé”, Astérisque, 2009, 83–100 | MR | Zbl
[12] Casale G., Weil J. A., Galoisian methods for testing irreducibility of order two nonlinear differential equations, arXiv: 1504.08134
[13] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[14] Dubrovin B., Mazzocco M., “Monodromy of certain Painlevé-VI transcendents and reflection groups”, Invent. Math., 141 (2000), 55–147, arXiv: math.AG/9806056 | DOI | MR | Zbl
[15] Grothendieck A., “Esquisse d'un programme”, Geometric {G}alois Actions, v. I, London Math. Soc. Lecture Note Ser., 242, eds. L. Schneps, P. Lochak, Cambridge University Press, Cambridge, 1997, 5–48 | MR | Zbl
[16] Iwasaki K., “A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation”, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002), 131–135 | DOI | MR | Zbl
[17] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I: General theory and $\tau$-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[18] Kawai T., Koike T., Nishikawa Y., Takei Y., “On the complete description of the Stokes geometry for the first Painlevé hierarchy”, Microlocal Analysis and Asymptotic Analysis, RIMS Kôkyûroku Bessatsu, 1397, ed. T. Kawai, Res. Inst. Math. Sci. (RIMS), Kyoto, 2004, 74–101
[19] Kawai T., Takei Y., Algebraic analysis of singular perturbation theory, Translations of Mathematical Monographs, 227, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[20] Magnus W., Math. Z., 170 (1980), Rings of Fricke characters and automorphism groups of free groups | DOI | MR
[21] Malgrange B., “Sur les déformations isomonodromiques. I: Singularités régulières”, Mathematics and Physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 401–426 | MR
[22] Malgrange B., “Sur les déformations isomonodromiques. II: Singularités irrégulières”, Mathematics and Physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 427–438 | MR
[23] Malgrange B., “Le groupoïde de Galois d'un feuilletage”, Essays on Geometry and Related Topics, Monogr. Enseign. Math., 38, Enseignement Math., Geneva, 2001, 465–501 | MR | Zbl
[24] Malgrange B., “On nonlinear differential Galois theory”, Chin. Ann. Math., 23 (2002), 219–226 | DOI | MR | Zbl
[25] Malgrange B., “Déformations isomonodromiques, forme de Liouville, fonction $\tau$”, Ann. Inst. Fourier (Grenoble), 54 (2004), 1371–1392 | DOI | MR | Zbl
[26] Martinet J., Ramis J.-P., “Elementary acceleration and multisummability, I”, Ann. Inst. H. Poincaré Phys. Théor., 54 (1991), 331–401 | MR | Zbl
[27] Ramis J.-P., “Confluence et résurgence”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 703–716 | MR | Zbl
[28] Ueno K., “Monodromy preserving deformation of linear differential equations with irregular singular points”, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 97–102 | DOI | MR | Zbl
[29] van der Put M., Saito M. H., “Moduli spaces for linear differential equations and the Painlevé equations”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2611–2667, arXiv: 0902.1702 | DOI | MR | Zbl
[30] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der mathematischen Wissenschaft, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[31] Witten E., “Gauge theory and wild ramification”, Anal. Appl. (Singap.), 6 (2008), 429–501, arXiv: 0710.0631 | DOI | MR | Zbl