@article{SIGMA_2015_11_a65,
author = {Alexey A. Magazev and Vitaly V. Mikheyev and Igor V. Shirokov},
title = {Computation of {Composition} {Functions} and {Invariant} {Vector} {Fields} in {Terms} of {Structure} {Constants} of {Associated} {Lie} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a65/}
}
TY - JOUR AU - Alexey A. Magazev AU - Vitaly V. Mikheyev AU - Igor V. Shirokov TI - Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a65/ LA - en ID - SIGMA_2015_11_a65 ER -
%0 Journal Article %A Alexey A. Magazev %A Vitaly V. Mikheyev %A Igor V. Shirokov %T Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a65/ %G en %F SIGMA_2015_11_a65
Alexey A. Magazev; Vitaly V. Mikheyev; Igor V. Shirokov. Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a65/
[1] Alhassid Y., Engel J., Wu J., “Algebraic approach to the scattering matrix”, Phys. Rev. Lett., 53 (1984), 17–20 | DOI | MR
[2] Baranovskii S. P., Shirokov I. V., “Extensions of vector fields on Lie groups and homogeneous spaces”, Theoret. and Math. Phys., 135 (2003), 510–519 | DOI | MR | Zbl
[3] Basarab-Horwath P., Lahno V., Zhdanov R., “The structure of Lie algebras and the classification problem for partial differential equations”, Acta Appl. Math., 69 (2001), 43–94, arXiv: math-ph/0005013 | DOI | MR | Zbl
[4] Chevalley C., Theory of Lie groups, v. 1, Princeton University Press, Princeton, NJ, 1946 | Zbl
[5] Cohn P. M., Lie groups, Cambridge Tracts in Mathematics and Mathematical Physics, 46, Cambridge University Press, New York, 1957 | MR | Zbl
[6] Draisma J., “Transitive Lie algebras of vector fields: an overview”, Qual. Theory Dyn. Syst., 11 (2012), 39–60, arXiv: 1107.2836 | DOI | MR | Zbl
[7] Fushchich V. I., Barannik L. F., Barannik A. F., Subgroup analysis of Galilean and Poincaré groups and reduction of nonlinear equations, Naukova Dumka, Kiev, 1991 | MR
[8] Fushchych W. I., Zhdanov R. Z., Symmetries of nonlinear Dirac equations, Mathematical Ukraina Publisher, Kyiv, 1997, arXiv: math-ph/0609052 | MR
[9] Goncharovskii M. M., Shirokov I. V., “An integrable class of differential equations with nonlocal nonlinearity on Lie groups”, Theoret. and Math. Phys., 161 (2009), 332–345 | DOI | MR | Zbl
[10] González-López A., Kamran N., Olver P. J., “Lie algebras of vector fields in the real plane”, Proc. London Math. Soc., 64 (1992), 339–368 | DOI | MR | Zbl
[11] Gorbatsevich V. V., Onishchik A. L., “Lie groups of transformations”, Lie groups and Lie algebras – 1, Current Problems in Mathematics. Fundamental Directions, 20, VINITI, M., 1988, 103–240 | MR
[12] Hausner M., Schwartz J. T., Lie groups; Lie algebras, Gordon and Breach Science Publishers, New York–London–Paris, 1968 | MR | Zbl
[13] Heredero R. H., Olver P. J., “Classification of invariant wave equations”, J. Math. Phys., 37 (1996), 6414–6438 | DOI | MR | Zbl
[14] Kurnyavko O. L., Shirokov I. V., “Construction of invariant wave equations of scalar particles on Riemannian manifolds with external gauge fields”, Theoret. and Math. Phys., 156 (2008), 1169–1179 | DOI | MR | Zbl
[15] Lie S., Theorie der Transformationsgruppen, v. 1–3, Teubner, Leipzig, 1888; 1890; 1893
[16] Lychagin V. V., “Classification of the intransitive actions of Lie algebras”, Soviet Math., 1989, no. 5, 25–38 | MR | Zbl
[17] Miller W. (Jr.), Lie theory and special functions, Mathematics in Science and Engineering, 43, Academic Press, New York–London, 1968 | MR | Zbl
[18] Mosolova M. V., “A new formula for $\ln (e^{A}e^{B})$ in terms of the commutators of the elements $A$ and $B$”, Math. Notes, 23 (1978), 448–452 | DOI | MR | Zbl
[19] O'Cadiz Gustad C., “Local structure of 2 dimensional solvable lie algebra actions on the plane”, Lobachevskii J. Math., 33 (2012), 317–335 | DOI | MR | Zbl
[20] Petrov A. Z., New methods in the general theory of relativity, Nauka, M., 1966 | MR
[21] Pontryagin L. S., Continuous groups, Nauka, M., 1973 | MR
[22] Popovych R. O., Boyko V. M., Nesterenko M. O., Lutfullin M. W., “Realizations of real low-dimensional Lie algebras”, J. Phys. A: Math. Gen., 36 (2003), 7337–7360, arXiv: math-ph/0301029 | DOI | MR | Zbl
[23] Shapovalov A. V., Shirokov I. V., “Noncommutative integration of linear differential equations”, Theoret. and Math. Phys., 104 (1995), 921–934 | DOI | MR | Zbl
[24] Shchepochkina I. M., “How to realize a Lie algebra by vector fields”, Theoret. and Math. Phys., 147 (2006), 450–469, arXiv: math.RT/0509472 | DOI | MR | Zbl
[25] Shirokov I. V., “Construction of Lie algebras of first-order differential operators”, Russian Phys. J., 40 (1997), 525–530 | DOI | MR
[26] Terzis P. A., Faithful representations of Lie algebras and homogeneous spaces, arXiv: 1304.7894