A CA Hybrid of the Slow-to-Start and the Optimal Velocity Models and its Flow-Density Relation
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The s2s-OVCA is a cellular automaton (CA) hybrid of the optimal velocity (OV) model and the slow-to-start (s2s) model, which is introduced in the framework of the ultradiscretization method. Inverse ultradiscretization as well as the time continuous limit, which lead the s2s-OVCA to an integral-differential equation, are presented. Several traffic phases such as a free flow as well as slow flows corresponding to multiple metastable states are observed in the flow-density relations of the s2s-OVCA. Based on the properties of the stationary flow of the s2s-OVCA, the formulas for the flow-density relations are derived.
Keywords: optimal velocity (OV) model; slow-to-start (s2s) effect; cellular automaton (CA); ultradiscretization, flow-density relation.
@article{SIGMA_2015_11_a64,
     author = {Hideaki Ujino and Tetsu Yajima},
     title = {A {CA} {Hybrid} of the {Slow-to-Start} and the {Optimal} {Velocity} {Models} and its {Flow-Density} {Relation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a64/}
}
TY  - JOUR
AU  - Hideaki Ujino
AU  - Tetsu Yajima
TI  - A CA Hybrid of the Slow-to-Start and the Optimal Velocity Models and its Flow-Density Relation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a64/
LA  - en
ID  - SIGMA_2015_11_a64
ER  - 
%0 Journal Article
%A Hideaki Ujino
%A Tetsu Yajima
%T A CA Hybrid of the Slow-to-Start and the Optimal Velocity Models and its Flow-Density Relation
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a64/
%G en
%F SIGMA_2015_11_a64
Hideaki Ujino; Tetsu Yajima. A CA Hybrid of the Slow-to-Start and the Optimal Velocity Models and its Flow-Density Relation. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a64/

[1] Bando M., Hasebe K., Nakayama A., Shibata A., Sugiyama Y., “Dynamical model of traffic congestion and numerical simulation”, Phys. Rev. E, 51 (1995), 1035–1042 | DOI

[2] Barlovic R., Santen L., Schadschneider A., Schreckenberg M., “Metastable states in cellular automata for traffic flow”, Eur. Phys. J. B, 5 (1998), 793–800, arXiv: cond-mat/9804170 | DOI

[3] Chowdhury D., Santen L., Schadschneider A., “Statistical physics of vehicular traffic and some related systems”, Phys. Rep., 329 (2000), 199–329, arXiv: cond-mat/0007053 | DOI | MR

[4] Fukui M., Ishibashi Y., “Traffic flow in 1D cellular automaton model including cars moving with high speed”, J. Phys. Soc. Japan, 65 (1996), 1868–1870 | DOI

[5] Helbing D., “Traffic and related self-driven many-particle systems”, Rev. Modern Phys., 73 (2001), 1067–1141, arXiv: cond-mat/0012229 | DOI

[6] Helbing D., Schreckenberg M., “Cellular automata simulating experimental properties of traffic flow”, Phys. Rev. E, 59 (1999), R2505–R2508, arXiv: cond-mat/9812300 | DOI

[7] Kanai M., Isojima S., Nishinari K., Tokihiro T., “Ultradiscrete optimal velocity model: a cellular-automaton model for traffic flos and linear instability of high-flux traffic”, Phys. Rev. E, 79 (2009), 056108, 8 pp., arXiv: 0902.2633 | DOI

[8] Newell G. F., “Nonlinear effects in the dynamics of car flowing”, Operations Res., 9 (1961), 209–229 | DOI | MR | Zbl

[9] Oguma K., Ujino H., “A hybrid of the optimal velocity and the slow-to-start models and its ultradiscretization”, JSIAM Lett., 1 (2009), 68–71, arXiv: 0908.3377 | DOI | MR | Zbl

[10] Takahashi D., Matsukidaira J., “On a discrete optimal velocity model and its continuous and ultradiscrete relatives”, JSIAM Lett., 1 (2009), 1–4, arXiv: 0809.1265 | DOI | MR

[11] Takahashi D., Satsuma J., “A soliton cellular automaton”, J. Phys. Soc. Japan, 59 (1990), 3514–3519 | DOI | MR

[12] Takayasu M., Takayasu H., “$1/f$ noise in a traffic model”, Fractals, 1 (1993), 860–866 | DOI | Zbl

[13] Tian R., “The mathematical solution of a cellular automaton model which simulates traffic flow with a slow-to-start effect”, Discrete Appl. Math., 157 (2009), 2904–2917 | DOI | MR | Zbl

[14] Tokihiro T., Takahashi D., Matsukidaira J., Satsuma J., “From soliton equations to integrable cellular automata through a limiting procedure”, Phys. Rev. Lett., 76 (1996), 3247–3250 | DOI

[15] Ujino H., Yajima T., “Exact solutions and flow-density relations for a cellular automaton variant of the optimal velocity model with the slow-to-start effect”, J. Phys. Soc. Japan, 81 (2012), 124005, 8 pp., arXiv: 1210.7562 | DOI

[16] Wolfram S. (ed.), Theory and applications of cellular automata, Advanced Series on Complex Systems, 1, World Scientific Publishing Co., Singapore, 1986 | MR | Zbl