@article{SIGMA_2015_11_a64,
author = {Hideaki Ujino and Tetsu Yajima},
title = {A {CA} {Hybrid} of the {Slow-to-Start} and the {Optimal} {Velocity} {Models} and its {Flow-Density} {Relation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a64/}
}
TY - JOUR AU - Hideaki Ujino AU - Tetsu Yajima TI - A CA Hybrid of the Slow-to-Start and the Optimal Velocity Models and its Flow-Density Relation JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a64/ LA - en ID - SIGMA_2015_11_a64 ER -
%0 Journal Article %A Hideaki Ujino %A Tetsu Yajima %T A CA Hybrid of the Slow-to-Start and the Optimal Velocity Models and its Flow-Density Relation %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a64/ %G en %F SIGMA_2015_11_a64
Hideaki Ujino; Tetsu Yajima. A CA Hybrid of the Slow-to-Start and the Optimal Velocity Models and its Flow-Density Relation. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a64/
[1] Bando M., Hasebe K., Nakayama A., Shibata A., Sugiyama Y., “Dynamical model of traffic congestion and numerical simulation”, Phys. Rev. E, 51 (1995), 1035–1042 | DOI
[2] Barlovic R., Santen L., Schadschneider A., Schreckenberg M., “Metastable states in cellular automata for traffic flow”, Eur. Phys. J. B, 5 (1998), 793–800, arXiv: cond-mat/9804170 | DOI
[3] Chowdhury D., Santen L., Schadschneider A., “Statistical physics of vehicular traffic and some related systems”, Phys. Rep., 329 (2000), 199–329, arXiv: cond-mat/0007053 | DOI | MR
[4] Fukui M., Ishibashi Y., “Traffic flow in 1D cellular automaton model including cars moving with high speed”, J. Phys. Soc. Japan, 65 (1996), 1868–1870 | DOI
[5] Helbing D., “Traffic and related self-driven many-particle systems”, Rev. Modern Phys., 73 (2001), 1067–1141, arXiv: cond-mat/0012229 | DOI
[6] Helbing D., Schreckenberg M., “Cellular automata simulating experimental properties of traffic flow”, Phys. Rev. E, 59 (1999), R2505–R2508, arXiv: cond-mat/9812300 | DOI
[7] Kanai M., Isojima S., Nishinari K., Tokihiro T., “Ultradiscrete optimal velocity model: a cellular-automaton model for traffic flos and linear instability of high-flux traffic”, Phys. Rev. E, 79 (2009), 056108, 8 pp., arXiv: 0902.2633 | DOI
[8] Newell G. F., “Nonlinear effects in the dynamics of car flowing”, Operations Res., 9 (1961), 209–229 | DOI | MR | Zbl
[9] Oguma K., Ujino H., “A hybrid of the optimal velocity and the slow-to-start models and its ultradiscretization”, JSIAM Lett., 1 (2009), 68–71, arXiv: 0908.3377 | DOI | MR | Zbl
[10] Takahashi D., Matsukidaira J., “On a discrete optimal velocity model and its continuous and ultradiscrete relatives”, JSIAM Lett., 1 (2009), 1–4, arXiv: 0809.1265 | DOI | MR
[11] Takahashi D., Satsuma J., “A soliton cellular automaton”, J. Phys. Soc. Japan, 59 (1990), 3514–3519 | DOI | MR
[12] Takayasu M., Takayasu H., “$1/f$ noise in a traffic model”, Fractals, 1 (1993), 860–866 | DOI | Zbl
[13] Tian R., “The mathematical solution of a cellular automaton model which simulates traffic flow with a slow-to-start effect”, Discrete Appl. Math., 157 (2009), 2904–2917 | DOI | MR | Zbl
[14] Tokihiro T., Takahashi D., Matsukidaira J., Satsuma J., “From soliton equations to integrable cellular automata through a limiting procedure”, Phys. Rev. Lett., 76 (1996), 3247–3250 | DOI
[15] Ujino H., Yajima T., “Exact solutions and flow-density relations for a cellular automaton variant of the optimal velocity model with the slow-to-start effect”, J. Phys. Soc. Japan, 81 (2012), 124005, 8 pp., arXiv: 1210.7562 | DOI
[16] Wolfram S. (ed.), Theory and applications of cellular automata, Advanced Series on Complex Systems, 1, World Scientific Publishing Co., Singapore, 1986 | MR | Zbl