${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the ${\rm GL}(3)$-invariant $R$-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded into series with respect to the inverse spectral parameter we calculate matrix elements of the local operators in the basis of the transfer matrix eigenstates. We obtain determinant representations for these matrix elements. Thus, we solve the inverse scattering problem in a weak sense.
Keywords: Bethe ansatz; quantum affine algebras, composite models.
@article{SIGMA_2015_11_a63,
     author = {Stanislav Pakuliak and Eric Ragoucy and Nikita A. Slavnov},
     title = {${\rm GL}(3)${-Based} {Quantum} {Integrable} {Composite} {Models.} {II.~Form} {Factors} of {Local} {Operators}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a63/}
}
TY  - JOUR
AU  - Stanislav Pakuliak
AU  - Eric Ragoucy
AU  - Nikita A. Slavnov
TI  - ${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a63/
LA  - en
ID  - SIGMA_2015_11_a63
ER  - 
%0 Journal Article
%A Stanislav Pakuliak
%A Eric Ragoucy
%A Nikita A. Slavnov
%T ${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a63/
%G en
%F SIGMA_2015_11_a63
Stanislav Pakuliak; Eric Ragoucy; Nikita A. Slavnov. ${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a63/

[1] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “Highest coefficient of scalar products in ${\rm SU}(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2012 (2012), P09003, 17 pp., arXiv: 1206.4931 | DOI | MR

[2] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “The algebraic Bethe ansatz for scalar products in ${\rm SU}(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2012 (2012), P10017, 25 pp., arXiv: 1207.0956 | DOI | MR

[3] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “Bethe vectors of ${\rm GL}(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013 (2013), P02020, 24 pp., arXiv: 1210.0768 | DOI | MR

[4] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “Form factors in ${\rm SU}(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013 (2013), P04033, 16 pp., arXiv: 1211.3968 | DOI | MR

[5] Caux J.-S., Maillet J. M., “Computation of dynamical correlation functions of Heisenberg chains in a magnetic field”, Phys. Rev. Lett., 95 (2005), 077201, 3 pp., arXiv: cond-mat/0502365 | DOI

[6] Enriquez B., Khoroshkin S., Pakuliak S., “Weight functions and Drinfeld currents”, Comm. Math. Phys., 276 (2007), 691–725, arXiv: math.QA/0610398 | DOI | MR | Zbl

[7] Faddeev L. D., “How the algebraic Bethe ansatz works for integrable models”, Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 149–219, arXiv: hep-th/9605187 | MR | Zbl

[8] Göhmann F., Klümper A., Seel A., “Integral representations for correlation functions of the $XXZ$ chain at finite temperature”, J. Phys. A: Math. Gen., 37 (2004), 7625–7651, arXiv: hep-th/0405089 | DOI | MR | Zbl

[9] Göhmann F., Klümper A., Seel A., “Integral representation of the density matrix of the $XXZ$ chain at finite temperatures”, J. Phys. A: Math. Gen., 38 (2005), 1833–1841, arXiv: cond-mat/0412062 | DOI | MR | Zbl

[10] Izergin A. G., Korepin V. E., “The quantum inverse scattering method approach to correlation functions”, Comm. Math. Phys., 94 (1984), 67–92 | DOI | MR | Zbl

[11] Izergin A. G., Korepin V. E., Reshetikhin N. Yu., “Correlation functions in a one-dimensional Bose gas”, J. Phys. A: Math. Gen., 20 (1987), 4799–4822 | DOI | MR

[12] Khoroshkin S., Pakuliak S., “A computation of universal weight function for quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Math. Kyoto Univ., 48 (2008), 277–321, arXiv: 0711.2819 | MR | Zbl

[13] Khoroshkin S., Pakuliak S., Tarasov V., “Off-shell Bethe vectors and Drinfeld currents”, J. Geom. Phys., 57 (2007), 1713–1732, arXiv: math.QA/0610517 | DOI | MR | Zbl

[14] Kitanine N., Kozlowski K., Maillet J. M., Slavnov N. A., Terras V., “On correlation functions of integrable models associated with the six-vertex $R$-matrix”, J. Stat. Mech. Theory Exp., 2007 (2007), P01022, 17 pp., arXiv: hep-th/0611142 | DOI | MR

[15] Kitanine N., Kozlowski K., Maillet J. M., Slavnov N. A., Terras V., “Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2009 (2009), P04003, 66 pp., arXiv: 0808.0227 | DOI | MR

[16] Kitanine N., Kozlowski K., Maillet J. M., Slavnov N. A., Terras V., “On the thermodynamic limit of form factors in the massless $XXZ$ Heisenberg chain”, J. Math. Phys., 50 (2009), 095209, 24 pp., arXiv: 0903.2916 | DOI | MR | Zbl

[17] Kitanine N., Kozlowski K., Maillet J. M., Slavnov N. A., Terras V., “A form factor approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2011 (2011), P12010, 27 pp., arXiv: 1110.0803 | DOI

[18] Kitanine N., Maillet J. M., Slavnov N. A., Terras V., “Spin-spin correlation functions of the $XXZ\text{-}{1\over2}$ Heisenberg chain in a magnetic field”, Nuclear Phys. B, 641 (2002), 487–518, arXiv: hep-th/0201045 | DOI | MR | Zbl

[19] Kitanine N., Maillet J. M., Slavnov N. A., Terras V., “Master equation for spin-spin correlation functions of the $XXZ$ chain”, Nuclear Phys. B, 712 (2005), 600–622, arXiv: hep-th/0406190 | DOI | MR | Zbl

[20] Kitanine N., Maillet J. M., Terras V., “Form factors of the $XXZ$ Heisenberg spin-$\frac 12$ finite chain”, Nuclear Phys. B, 554 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR | Zbl

[21] Korepin V. E., “Correlation functions of the one-dimensional Bose gas in the repulsive case”, Comm. Math. Phys., 94 (1984), 93–113 | DOI | MR | Zbl

[22] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl

[23] Kulish P. P., Reshetikhin N. Yu., “Diagonalisation of ${\rm GL}(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model)”, J. Phys. A: Math. Gen., 16 (1983), L591–L596 | DOI | MR | Zbl

[24] Kulish P. P., Reshetikhin N. Yu., “${\rm GL}_{3}$-invariant solutions of the Yang–Baxter equation and associated quantum systems”, J. Sov. Math., 34 (1986), 1948–1971 | DOI

[25] Maillet J. M., Terras V., “On the quantum inverse scattering problem”, Nuclear Phys. B, 575 (2000), 627–644, arXiv: hep-th/9911030 | DOI | MR | Zbl

[26] Mukhin E., Tarasov V., Varchenko A., “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech. Theory Exp., 2006 (2006), P08002, 44 pp., arXiv: math.QA/0605015 | DOI | MR

[27] Pakuliak S., Ragoucy E., Slavnov N. A., “Determinant representations for form factors in quantum integrable models with the ${\rm GL}(3)$-invariant $R$-matrix”, Theoret. and Math. Phys., 181 (2014), 1566–1584, arXiv: 1406.5125 | DOI | MR | Zbl

[28] Pakuliak S., Ragoucy E., Slavnov N. A., “Form factors in quantum integrable models with ${\rm GL}(3)$-invariant $R$-matrix”, Nuclear Phys. B, 881 (2014), 343–368, arXiv: 1312.1488 | DOI | MR | Zbl

[29] Pakuliak S., Ragoucy E., Slavnov N. A., “${\rm GL}(3)$-based quantum integrable composite models. I: Bethe vectors”, SIGMA, 11 (2015), 063, 20 pp., arXiv: 1501.07566 | DOI | MR

[30] Pakuliak S., Ragoucy E., Slavnov N. A., “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481, arXiv: 1412.6037 | DOI | MR

[31] Pozsgay B., van Gerven Oei W. V., Kormos M., “On form factors in nested Bethe Ansatz systems”, J. Phys. A: Math. Theor., 45 (2012), 465007, 34 pp., arXiv: 1204.4037 | DOI | MR | Zbl

[32] Reshetikhin N. Yu., “Calculation of the norm of {B}ethe vectors in models with ${\rm SU}(3)$ symmetry”, J. Sov. Math., 46 (1989), 1694–1706 | DOI | MR

[33] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Quantum inverse problem method, I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI | MR

[34] Slavnov N. A., “The algebraic Bethe ansatz and quantum integrable systems”, Russian Math. Surveys, 62 (2007), 727–766 | DOI | MR | Zbl

[35] Sutherland B., “Further results for the many-body problem in one dimension”, Phys. Rev. Lett., 20 (1968), 98–100 | DOI

[36] Takhtadzhan L. A., Faddeev L. D., “The quantum method for the inverse problem and the Heisenberg $XYZ$ model”, Russian Math. Surveys, 34:5 (1979), 11–68 | DOI

[37] Varchenko A. N., Tarasov V. O., “Jackson integral representations for solutions of the Knizhnik–Zamolodchikov quantum equation”, St. Petersburg Math. J., 6 (1994), 275–313, arXiv: hep-th/9311040 | MR | Zbl

[38] Wheeler M., “Scalar products in generalized models with $SU(3)$-symmetry”, Comm. Math. Phys., 327 (2014), 737–777, arXiv: 1204.2089 | DOI | MR | Zbl

[39] Yang C. N., “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1312–1315 | DOI | MR | Zbl