@article{SIGMA_2015_11_a62,
author = {Stanislav Pakuliak and Eric Ragoucy and Nikita A. Slavnov},
title = {${\rm GL}(3)${-Based} {Quantum} {Integrable} {Composite} {Models.} {I.~Bethe} {Vectors}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a62/}
}
TY - JOUR
AU - Stanislav Pakuliak
AU - Eric Ragoucy
AU - Nikita A. Slavnov
TI - ${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors
JO - Symmetry, integrability and geometry: methods and applications
PY - 2015
VL - 11
UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a62/
LA - en
ID - SIGMA_2015_11_a62
ER -
%0 Journal Article
%A Stanislav Pakuliak
%A Eric Ragoucy
%A Nikita A. Slavnov
%T ${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a62/
%G en
%F SIGMA_2015_11_a62
Stanislav Pakuliak; Eric Ragoucy; Nikita A. Slavnov. ${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a62/
[1] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “Bethe vectors of ${\rm GL}(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013 (2013), P02020, 24 pp., arXiv: 1210.0768 | DOI | MR
[2] Enriquez B., Khoroshkin S., Pakuliak S., “Weight functions and Drinfeld currents”, Comm. Math. Phys., 276 (2007), 691–725, arXiv: math.QA/0610398 | DOI | MR | Zbl
[3] Izergin A. G., “Partition function of a six-vertex model in a finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl
[4] Izergin A. G., Korepin V. E., “The quantum inverse scattering method approach to correlation functions”, Comm. Math. Phys., 94 (1984), 67–92 | DOI | MR | Zbl
[5] Izergin A. G., Korepin V. E., Reshetikhin N. Yu., “Correlation functions in a one-dimensional Bose gas”, J. Phys. A: Math. Gen., 20 (1987), 4799–4822 | DOI | MR
[6] Khoroshkin S., Pakuliak S., “A computation of universal weight function for quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Math. Kyoto Univ., 48 (2008), 277–321, arXiv: 0711.2819 | MR | Zbl
[7] Khoroshkin S., Pakuliak S., Tarasov V., “Off-shell Bethe vectors and Drinfeld currents”, J. Geom. Phys., 57 (2007), 1713–1732, arXiv: math.QA/0610517 | DOI | MR | Zbl
[8] Kitanine N., Kozlowski K., Maillet J. M., Slavnov N. A., Terras V., “On correlation functions of integrable models associated with the six-vertex $R$-matrix”, J. Stat. Mech. Theory Exp., 2007 (2007), P01022, 17 pp., arXiv: hep-th/0611142 | DOI | MR
[9] Kitanine N., Maillet J. M., Terras V., “Correlation functions of the $XXZ$ Heisenberg spin-${1\over2}$ chain in a magnetic field”, Nuclear Phys. B, 567 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl
[10] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[11] Pakuliak S., Ragoucy E., Slavnov N. A., “Bethe vectors of quantum integrable models based on $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Phys. A: Math. Theor., 47 (2014), 105202, 16 pp., arXiv: 1310.3253 | DOI | MR | Zbl
[12] Pakuliak S., Ragoucy E., Slavnov N. A., “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481, arXiv: 1412.6037 | DOI | MR
[13] Pakuliak S., Ragoucy E., Slavnov N. A., Form factors of local operators in a one-dimensional two-component Bose gas, arXiv: 1503.00546
[14] Slavnov N. A., “Calculation of scalar products of wave functions and form-factors in the framework of the algebraic Bethe ansatz”, Theoret. and Math. Phys., 79 (1989), 502–508 | DOI | MR
[15] Slavnov N. A., “The algebraic Bethe ansatz and quantum integrable systems”, Russian Math. Surveys, 62 (2007), 727–766 | DOI | MR | Zbl
[16] Varchenko A. N., Tarasov V. O., “Jackson integral representations for solutions of the Knizhnik–Zamolodchikov quantum equation”, St. Petersburg Math. J., 6 (1994), 275–313, arXiv: hep-th/9311040 | MR | Zbl