Topological Monodromy of an Integrable Heisenberg Spin Chain
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate topological properties of a completely integrable system on $S^2\times S^2 \times S^2$ which was recently shown to have a Lagrangian fiber diffeomorphic to $\mathbb{R} P^3$ not displaceable by a Hamiltonian isotopy [Oakley J., Ph.D. Thesis, University of Georgia, 2014]. This system can be viewed as integrating the determinant, or alternatively, as integrating a classical Heisenberg spin chain. We show that the system has non-trivial topological monodromy and relate this to the geometric interpretation of its integrals.
Keywords: integrable system; monodromy; Lagrangian fibration; Heisenberg spin chain.
@article{SIGMA_2015_11_a61,
     author = {Jeremy Lane},
     title = {Topological {Monodromy} of an {Integrable} {Heisenberg} {Spin} {Chain}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a61/}
}
TY  - JOUR
AU  - Jeremy Lane
TI  - Topological Monodromy of an Integrable Heisenberg Spin Chain
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a61/
LA  - en
ID  - SIGMA_2015_11_a61
ER  - 
%0 Journal Article
%A Jeremy Lane
%T Topological Monodromy of an Integrable Heisenberg Spin Chain
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a61/
%G en
%F SIGMA_2015_11_a61
Jeremy Lane. Topological Monodromy of an Integrable Heisenberg Spin Chain. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a61/

[1] Atiyah M. F., “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14 (1982), 1–15 | DOI | MR | Zbl

[2] Bates L. M., “Monodromy in the champagne bottle”, Z. Angew. Math. Phys., 42 (1991), 837–847 | DOI | MR | Zbl

[3] Bolsinov A. V., Fomenko A. T., Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004 | DOI | MR | Zbl

[4] Cushman R., “Geometry of the energy momentum mapping of the spherical pendulum”, CWI Newslett., 1983, 4–18 | MR

[5] Duistermaat J. J., “On global action-angle coordinates”, Comm. Pure Appl. Math., 33 (1980), 687–706 | DOI | MR | Zbl

[6] Eliasson L. H., “Normal forms for Hamiltonian systems with Poisson commuting integrals — elliptic case”, Comment. Math. Helv., 65 (1990), 4–35 | DOI | MR | Zbl

[7] Entov M., Polterovich L., “Rigid subsets of symplectic manifolds”, Compos. Math., 145 (2009), 773–826, arXiv: 0704.0105 | DOI | MR | Zbl

[8] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Toric degeneration and nondisplaceable Lagrangian tori in $S^2\times S^2$”, Int. Math. Res. Not., 2012 (2012), 2942–2993, arXiv: 1002.1660 | DOI | MR | Zbl

[9] Grabowski M. P., Mathieu P., “Quantum integrals of motion for the Heisenberg spin chain”, Modern Phys. Lett. A, 9 (1994), 2197–2206, arXiv: hep-th/9403149 | DOI | MR | Zbl

[10] Hausmann J.-C., Knutson A., “Polygon spaces and Grassmannians”, Enseign. Math., 43 (1997), 173–198, arXiv: dg-ga/9602012 | MR | Zbl

[11] Hausmann J.-C., Knutson A., “The cohomology ring of polygon spaces”, Ann. Inst. Fourier (Grenoble), 48 (1998), 281–321, arXiv: dg-ga/9706003 | MR | Zbl

[12] Izosimov A. M., “Classification of almost toric singularities of Lagrangian foliations”, Sb. Math., 202 (2011), 1021–1042 | DOI | MR | Zbl

[13] Kapovich M., Millson J. J., “The symplectic geometry of polygons in Euclidean space”, J. Differential Geom., 44 (1996), 479–513 | MR | Zbl

[14] Leung N. C., Symington M., “Almost toric symplectic four-manifolds”, J. Symplectic Geom., 8 (2010), 143–187, arXiv: math.SG/0312165 | DOI | MR | Zbl

[15] Meinrenken E., Symplectic geometry, course notes, Unpublished lecture notes, 2000 http://www.math.toronto.edu/mein/teaching/sympl.pdf

[16] Oakley J., Lagrangian submanifolds of products of spheres, Ph.D. Thesis, University of Georgia, 2014

[17] Oakley J., Usher M., On certain Lagrangian submanifolds of $S^2\times S^2$ and $\mathbb{C}P^n$, arXiv: 1311.5152

[18] Pelayo A., Ratiu T. S., Vu Ngoc S., Symplectic bifurcation theory for integrable systems, arXiv: 1108.0328

[19] Williamson J., “On the algebraic problem concerning the normal forms of linear dynamical systems”, Amer. J. Math., 58 (1936), 141–163 | DOI | MR

[20] Wu W., “On an exotic Lagrangian torus in ${\mathbb C}P^2$”, Compos. Math., 151 (2015), 1372–1394, arXiv: 1201.2446 | DOI | MR

[21] Zung N. T., “Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities”, Compositio Math., 101 (1996), 179–215, arXiv: math.DS/0106013 | MR | Zbl

[22] Zung N. T., “A note on focus-focus singularities”, Differential Geom. Appl., 7 (1997), 123–130, arXiv: math.DS/0110147 | DOI | MR | Zbl