@article{SIGMA_2015_11_a60,
author = {Yves Grandati and Christiane Quesne},
title = {Confluent {Chains} of {DBT:} {Enlarged} {Shape} {Invariance} and {New} {Orthogonal} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a60/}
}
TY - JOUR AU - Yves Grandati AU - Christiane Quesne TI - Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a60/ LA - en ID - SIGMA_2015_11_a60 ER -
%0 Journal Article %A Yves Grandati %A Christiane Quesne %T Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a60/ %G en %F SIGMA_2015_11_a60
Yves Grandati; Christiane Quesne. Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a60/
[1] Abraham P. B., Moses H. E., “Changes in potentials due to changes in the point spectrum: anharmonic oscillators with exact solutions”, Phys. Rev. A, 22 (1980), 1333–1340 | DOI | MR
[2] Adler M., Moser J., “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61 (1978), 1–30 | DOI | MR | Zbl
[3] Adler V. È., “On a modification of Crum's method”, Theoret. and Math. Phys., 101 (1994), 1381–1386 | DOI | MR | Zbl
[4] Bagchi B., Grandati Y., Quesne C., “Rational extensions of the trigonometric Darboux–Pöschl–Teller potential based on para-Jacobi polynomials”, J. Math. Phys., 56 (2015), 062103, 11 pp., arXiv: 1411.7857 | DOI | MR | Zbl
[5] Baye D., “Phase-equivalent potentials for arbitrary modifications of the bound spectrum”, Phys. Rev. A, 48 (1993), 2040–2047 | DOI
[6] Berezin F. A., Shubin M. A., The Schrödinger equation, Kluwer, Dordrecht, 1991 | DOI | MR | Zbl
[7] Bermudez D., Fernández C. D. J., Fernández-García N., “Wronskian differential formula for confluent supersymmetric quantum mechanics”, Phys. Lett. A, 376 (2012), 692–696, arXiv: 1109.0079 | DOI | MR | Zbl
[8] Burchnall J. L., Chaundy T. W., “A set of differential equations which can be solved by polynomials”, Proc. London Math. Soc. S, 2:30 (1930), 401–414 | DOI | MR | Zbl
[9] Calogero F., Yi G., Can the general solution of the second-order ODE characterizing Jacobi polynomials be polynomial?, J. Phys. A: Math. Theor., 45 (2012), 095206, 4 pp. | DOI | MR | Zbl
[10] Cariñena J. F., Ramos A., “Integrability of the Riccati equation from a group-theoretical viewpoint”, Internat. J. Modern Phys. A, 14 (1999), 1935–1951, arXiv: math-ph/9810005 | DOI | MR | Zbl
[11] Cariñena J. F., Ramos A., Fernández C. D. J., “Group theoretical approach to the intertwined Hamiltonians”, Ann. Physics, 292 (2001), 42–66, arXiv: math-ph/0311029 | DOI | MR | Zbl
[12] Contreras-Astorga A., Fernández C. D. J., “Supersymmetric partners of the trigonometric Pöschl–Teller potentials”, J. Phys. A: Math. Theor., 41 (2008), 475303, 18 pp., arXiv: 0809.2760 | DOI | MR | Zbl
[13] Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001 | DOI | MR | Zbl
[14] Crum M. M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127, arXiv: physics/9908019 | DOI | MR
[15] Darboux G., “Sur une proposition relative aux équations linéaires”, C. R. Acad. Sci. Paris, 94 (1882), 1456–1459
[16] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. II, 2nd ed., Gauthier-Villars, Paris, 1915
[17] Durán A. J., Pérez M., “Admissibility condition for exceptional Laguerre polynomials”, J. Math. Anal. Appl., 424 (2015), 1042–1053, arXiv: 1409.4901 | DOI | MR | Zbl
[18] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, McGraw-Hill, New York, 1953
[19] Fernández C. D. J., Salinas-Hernández E., “The confluent algorithm in second-order supersymmetric quantum mechanics”, J. Phys. A: Math. Gen., 36 (2003), 2537–2543, arXiv: quant-ph/0303123 | DOI | MR | Zbl
[20] Fernández C. D. J., Salinas-Hernández E., “Wronskian formula for confluent second-order supersymmetric quantum mechanics”, Phys. Lett. A, 338 (2005), 13–18, arXiv: quant-ph/0502147 | DOI | MR | Zbl
[21] Fernández C. D. J., Salinas-Hernández E., “Hyperconfluent third-order supersymmetric quantum mechanics”, J. Phys. A: Math. Theor., 44 (2011), 365302, 11 pp., arXiv: 1105.2333 | DOI | MR | Zbl
[22] Gómez-Ullate D., Grandati Y., Milson R., “Extended Krein–Adler theorem for the translationally shape invariant potentials”, J. Math. Phys., 55 (2014), 043510, 30 pp., arXiv: 1309.3756 | DOI | MR | Zbl
[23] Gómez-Ullate D., Kamran N., Milson R., “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem”, J. Math. Anal. Appl., 359 (2009), 352–367, arXiv: 0807.3939 | DOI | MR | Zbl
[24] Grandati Y., “Solvable rational extensions of the isotonic oscillator”, Ann. Physics, 326 (2011), 2074–2090, arXiv: 1101.0055 | DOI | MR | Zbl
[25] Grandati Y., “Multistep DBT and regular rational extensions of the isotonic oscillator”, Ann. Physics, 327 (2012), 2411–2431, arXiv: 1108.4503 | DOI | MR | Zbl
[26] Grandati Y., “New rational extensions of solvable potentials with finite bound state spectrum”, Phys. Lett. A, 376 (2012), 2866–2872, arXiv: 1203.4149 | DOI | MR
[27] Grandati Y., “A short proof of the Gaillard–Matveev theorem based on shape invariance arguments”, Phys. Lett. A, 378 (2014), 1755–1759, arXiv: 1211.2392 | DOI | MR
[28] Grandati Y., Bérard A., “Rational solutions for the Riccati–Schrödinger equations associated to translationally shape invariant potentials”, Ann. Physics, 325 (2010), 1235–1259, arXiv: 0910.4810 | DOI | MR | Zbl
[29] Grandati Y., Bérard A., “Comments on the generalized SUSY QM partnership for Darboux–Pöschl–Teller potential and exceptional Jacobi polynomials”, J. Engrg. Math., 82 (2013), 161–171 | DOI | MR
[30] Hartman P., Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964 | MR | Zbl
[31] Keung W.-Y., Sukhatme U. P., Wang Q. M., Imbo T. D., “Families of strictly isospectral potentials”, J. Phys. A: Math. Gen., 22 (1989), L987–L992 | DOI | MR
[32] Krein M. G., “On a continual analogue of a Christoffel formula from the theory of orthogonal polynomials”, Dokl. Akad. Nauk SSSR, 113 (1957), 970–973 | MR | Zbl
[33] Luban M., Pursey D. L., “New Schrödinger equations for old: inequivalence of the Darboux and Abraham–Moses constructions”, Phys. Rev. D, 33 (1986), 431–436 | DOI | MR
[34] Matveev V. B., “Generalized Wronskian formula for solutions of the KdV equations: first applications”, Phys. Lett. A, 166 (1992), 205–208 | DOI | MR
[35] Matveev V. B., “Positons: slowly decreasing analogues of solitons”, Theoret. and Math. Phys., 131 (2002), 483–497 | DOI | MR | Zbl
[36] Messiah A., Mécanique quantique, v. 1, Dunod, Paris, 1959 | MR
[37] Mielnik B., Nieto L. M., Rosas-Ortiz O., “The finite difference algorithm for higher order supersymmetry”, Phys. Lett. A, 269 (2000), 70–78, arXiv: quant-ph/0004024 | DOI | MR | Zbl
[38] Nieto M. M., “Relationship between supersymmetry and the inverse method in quantum mechanics”, Phys. Lett. B, 145 (1984), 208–210 | DOI | MR
[39] Odake S., Sasaki R., “Infinitely many shape invariant potentials and new orthogonal polynomials”, Phys. Lett. B, 679 (2009), 414–417, arXiv: 0906.0142 | DOI | MR
[40] Pursey D. L., “New families of isospectral Hamiltonians”, Phys. Rev. D, 33 (1986), 1048–1055 | DOI | MR
[41] Quesne C., “Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry”, J. Phys. A: Math. Theor., 41 (2008), 392001, 6 pp., arXiv: 0807.4087 | DOI | MR | Zbl
[42] Quesne C., “Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics”, SIGMA, 5 (2009), 084, 24 pp., arXiv: 0906.2331 | DOI | MR | Zbl
[43] Quesne C., “Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials”, Modern Phys. Lett. A, 26 (2011), 1843–1852, arXiv: 1106.1990 | DOI | MR | Zbl
[44] Quesne C., “Novel enlarged shape invariance property and exactly solvable rational extensions of the Rosen–{M}orse II and Eckart potentials”, SIGMA, 8 (2012), 080, 19 pp., arXiv: 1208.6165 | DOI | MR | Zbl
[45] Quesne C., “Revisiting (quasi-)exactly solvable rational extensions of the Morse potential”, Internat. J. Modern Phys. A, 27 (2012), 1250073, 18 pp., arXiv: 1203.1811 | DOI | MR | Zbl
[46] Samsonov B. F., “On the equivalence of the integral and the differential exact solution generation methods for the one-dimensional Schrödinger equation”, J. Phys. A: Math. Gen., 28 (1995), 6989–6998 | DOI | MR | Zbl
[47] Samsonov B. F., “New possibilities for supersymmetry breakdown in quantum mechanics and second-order irreducible Darboux transformations”, Phys. Lett. A, 263 (1999), 274–280, arXiv: quant-ph/9904009 | DOI | MR | Zbl
[48] Schulze-Halberg A., “Wronskian representation for confluent supersymmetric transformation chains of arbitrary order”, Eur. Phys. J. Plus, 128 (2013), 69, 17 pp. | DOI
[49] Sparenberg J.-M., Baye D., “Supersymmetric transformations of real potentials on the line”, J. Phys. A: Math. Gen., 28 (1995), 5079–5095 | DOI | MR | Zbl
[50] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975
[51] Vein R., Dale P., Determinants and their applications in mathematical physics, Applied Mathematical Sciences, 134, Springer-Verlag, New York, 1999 | DOI | MR | Zbl