On a Certain Subalgebra of $U_q(\widehat{\mathfrak{sl}}_2)$ Related to the Degenerate $q$-Onsager Algebra
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In [Kyushu J. Math. 64 (2010), 81–144], it is discussed that a certain subalgebra of the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$ controls the second kind TD-algebra of type I (the degenerate $q$-Onsager algebra). The subalgebra, which we denote by $U'_q(\widehat{\mathfrak{sl}}_2)$, is generated by $e_0^+$, $e_1^\pm$, $k_i^{\pm1}$ $(i=0,1)$ with $e^-_0$ missing from the Chevalley generators $e_i^\pm$, $k_i^{\pm1}$ $(i=0,1)$ of $U_q(\widehat{\mathfrak{sl}}_2)$. In this paper, we determine the finite-dimensional irreducible representations of $U'_q(\widehat{\mathfrak{sl}}_2)$. Intertwiners are also determined.
Keywords: degenerate $q$-Onsager algebra; quantum affine algebra; TD-algebra; augmented TD-algebra; TD-pair.
@article{SIGMA_2015_11_a6,
     author = {Tomoya Hattai and Tatsuro Ito},
     title = {On {a~Certain} {Subalgebra} of $U_q(\widehat{\mathfrak{sl}}_2)$ {Related} to the {Degenerate} $q${-Onsager} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a6/}
}
TY  - JOUR
AU  - Tomoya Hattai
AU  - Tatsuro Ito
TI  - On a Certain Subalgebra of $U_q(\widehat{\mathfrak{sl}}_2)$ Related to the Degenerate $q$-Onsager Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a6/
LA  - en
ID  - SIGMA_2015_11_a6
ER  - 
%0 Journal Article
%A Tomoya Hattai
%A Tatsuro Ito
%T On a Certain Subalgebra of $U_q(\widehat{\mathfrak{sl}}_2)$ Related to the Degenerate $q$-Onsager Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a6/
%G en
%F SIGMA_2015_11_a6
Tomoya Hattai; Tatsuro Ito. On a Certain Subalgebra of $U_q(\widehat{\mathfrak{sl}}_2)$ Related to the Degenerate $q$-Onsager Algebra. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a6/

[1] Benkart G., Terwilliger P., “Irreducible modules for the quantum affine algebra $U_q(\widehat{sl}_2)$ and its Borel subalgebra”, J. Algebra, 282 (2004), 172–194, arXiv: math.QA/0311152 | DOI | MR | Zbl

[2] Chari V., Pressley A., “Quantum affine algebras”, Comm. Math. Phys., 142 (1991), 261–283 | DOI | MR | Zbl

[3] Ito T., Tanabe K., Terwilliger P., “Some algebra related to $P$- and $Q$-polynomial association schemes”, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001, 167–192, arXiv: math.CO/0406556 | MR | Zbl

[4] Ito T., Terwilliger P., “The augmented tridiagonal algebra”, Kyushu J. Math., 64 (2010), 81–144, arXiv: 0904.2889 | DOI | MR | Zbl

[5] Tolstoy V. N., Khoroshkin S. M., “Universal $R$-matrix for quantized nontwisted affine Lie algebras”, Funct. Anal. Appl., 26 (1992), 69–71 | DOI | MR