@article{SIGMA_2015_11_a58,
author = {Jes\'us A. \'Alvarez L\'opez and Manuel Calaza and Carlos Franco},
title = {A {Perturbation} of the {Dunkl} {Harmonic} {Oscillator} on the {Line}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a58/}
}
TY - JOUR AU - Jesús A. Álvarez López AU - Manuel Calaza AU - Carlos Franco TI - A Perturbation of the Dunkl Harmonic Oscillator on the Line JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a58/ LA - en ID - SIGMA_2015_11_a58 ER -
%0 Journal Article %A Jesús A. Álvarez López %A Manuel Calaza %A Carlos Franco %T A Perturbation of the Dunkl Harmonic Oscillator on the Line %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a58/ %G en %F SIGMA_2015_11_a58
Jesús A. Álvarez López; Manuel Calaza; Carlos Franco. A Perturbation of the Dunkl Harmonic Oscillator on the Line. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a58/
[1] Álvarez López J., Calaza M., Application of the method of Bonan–Clark to the generalized Hermite polynomials, arXiv: 1101.5022
[2] Álvarez López J., Calaza M., “Witten's perturbation on strata”, Asian J. Math. (to appear) , arXiv: 1205.0348 | MR
[3] Álvarez López J., Calaza M. \, “Embedding theorems for the Dunkl harmonic oscillator”, SIGMA, 10 (2014), 004, 16 pp., arXiv: 1301.4196 | DOI | MR | Zbl
[4] Álvarez López J., Calaza M., Witten's perturbation on strata with generalized adapted metrics, in preparation
[5] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87 (1965), 695–708 | DOI | MR | Zbl
[6] Brasselet J. P., Hector G., Saralegi M., “${\mathcal L}^2$-cohomologie des espaces stratifiés”, Manuscripta Math., 76 (1992), 21–32 | DOI | MR | Zbl
[7] Cheung W.-S., “Generalizations of Hölder's inequality”, Int. J. Math. Math. Sci., 26 (2001), 7–10, arXiv: 1109.5567 | DOI | MR | Zbl
[8] Dunkl C. F., “Reflection groups and orthogonal polynomials on the sphere”, Math. Z., 197 (1988), 33–60 | DOI | MR | Zbl
[9] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[10] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl
[11] Dunkl C. F., “Symmetric functions and $B_N$-invariant spherical harmonics”, J. Phys. A: Math. Gen., 35 (2002), 10391–10408, arXiv: math.CA/0207122 | DOI | MR | Zbl
[12] Erdélyi A., “Asymptotic forms for Laguerre polynomials”, J. Indian Math. Soc., 24 (1960), 235–250 | MR
[13] Genest V. X., Vinet L., Zhedanov A., “The singular and the $2:1$ anisotropic Dunkl oscillators in the plane”, J. Phys. A: Math. Theor., 46 (2013), 325201, 17 pp., arXiv: 1305.2126 | DOI | MR | Zbl
[14] Kato T., Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl
[15] Muckenhoupt B., “Asymptotic forms for Laguerre polynomials”, Proc. Amer. Math. Soc., 24 (1970), 288–292 | DOI | MR | Zbl
[16] Muckenhoupt B., “Mean convergence of Laguerre and Hermite series. II”, Trans. Amer. Math. Soc., 147 (1970), 433–460 | DOI | MR
[17] Nagase M., “$L^{2}$-cohomology and intersection homology of stratified spaces”, Duke Math. J., 50 (1983), 329–368 | DOI | MR | Zbl
[18] Nagase M., “Sheaf theoretic $L^2$-cohomology”, Complex Analytic Singularities, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987, 273–279 | MR
[19] Nowak A., Stempak K., “Imaginary powers of the Dunkl harmonic oscillator”, SIGMA, 5 (2009), 016, 12 pp., arXiv: 0902.1958 | DOI | MR | Zbl
[20] Nowak A., Stempak K., “Riesz transforms for the Dunkl harmonic oscillator”, Math. Z., 262 (2009), 539–556, arXiv: 0802.0474 | DOI | MR | Zbl
[21] Plyushchay M., “Hidden nonlinear supersymmetries in pure parabosonic systems”, Internat. J. Modern Phys. A, 15 (2000), 3679–3698, arXiv: hep-th/9903130 | DOI | MR | Zbl
[22] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl
[23] Rosenblum M., “Generalized Hermite polynomials and the Bose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, eds. A. Feintuch, I. Gohberg, Birkhäuser, Basel, 1994, 369–396, arXiv: math.CA/9307224 | MR | Zbl
[24] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542, arXiv: q-alg/9703006 | DOI | MR | Zbl
[25] Rösler M., “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, eds. E. Koelink, W. Van Assche, Springer, Berlin, 2003, 93–135, arXiv: math.CA/0210366 | DOI | Zbl
[26] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR
[27] van Diejen J. F., Vinet L. (eds.), Calogero–Moser–Sutherland models, CRM Series in Mathematical Physics, Springer-Verlag, New York, 2000 | DOI | MR | Zbl
[28] Yang L. M., “A note on the quantum rule of the harmonic oscillator”, Phys. Rev., 84 (1951), 788–790 | DOI | MR | Zbl