A Perturbation of the Dunkl Harmonic Oscillator on the Line
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $J_\sigma$ be the Dunkl harmonic oscillator on ${\mathbb{R}}$ ($\sigma>-1/2$). For $0$ and $\xi>0$, it is proved that, if $\sigma>u-1/2$, then the operator $U=J_\sigma+\xi|x|^{-2u}$, with appropriate domain, is essentially self-adjoint in $L^2({\mathbb{R}},|x|^{2\sigma} dx)$, the Schwartz space ${\mathcal{S}}$ is a core of $\overline U^{1/2}$, and $\overline U$ has a discrete spectrum, which is estimated in terms of the spectrum of $\overline{J_\sigma}$. A generalization $J_{\sigma,\tau}$ of $J_\sigma$ is also considered by taking different parameters $\sigma$ and $\tau$ on even and odd functions. Then extensions of the above result are proved for $J_{\sigma,\tau}$, where the perturbation has an additional term involving, either the factor $x^{-1}$ on odd functions, or the factor $x$ on even functions. Versions of these results on ${\mathbb{R}}_+$ are derived.
Keywords: Dunkl harmonic oscillator; perturbation theory.
@article{SIGMA_2015_11_a58,
     author = {Jes\'us A. \'Alvarez L\'opez and Manuel Calaza and Carlos Franco},
     title = {A {Perturbation} of the {Dunkl} {Harmonic} {Oscillator} on the {Line}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a58/}
}
TY  - JOUR
AU  - Jesús A. Álvarez López
AU  - Manuel Calaza
AU  - Carlos Franco
TI  - A Perturbation of the Dunkl Harmonic Oscillator on the Line
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a58/
LA  - en
ID  - SIGMA_2015_11_a58
ER  - 
%0 Journal Article
%A Jesús A. Álvarez López
%A Manuel Calaza
%A Carlos Franco
%T A Perturbation of the Dunkl Harmonic Oscillator on the Line
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a58/
%G en
%F SIGMA_2015_11_a58
Jesús A. Álvarez López; Manuel Calaza; Carlos Franco. A Perturbation of the Dunkl Harmonic Oscillator on the Line. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a58/

[1] Álvarez López J., Calaza M., Application of the method of Bonan–Clark to the generalized Hermite polynomials, arXiv: 1101.5022

[2] Álvarez López J., Calaza M., “Witten's perturbation on strata”, Asian J. Math. (to appear) , arXiv: 1205.0348 | MR

[3] Álvarez López J., Calaza M. \, “Embedding theorems for the Dunkl harmonic oscillator”, SIGMA, 10 (2014), 004, 16 pp., arXiv: 1301.4196 | DOI | MR | Zbl

[4] Álvarez López J., Calaza M., Witten's perturbation on strata with generalized adapted metrics, in preparation

[5] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87 (1965), 695–708 | DOI | MR | Zbl

[6] Brasselet J. P., Hector G., Saralegi M., “${\mathcal L}^2$-cohomologie des espaces stratifiés”, Manuscripta Math., 76 (1992), 21–32 | DOI | MR | Zbl

[7] Cheung W.-S., “Generalizations of Hölder's inequality”, Int. J. Math. Math. Sci., 26 (2001), 7–10, arXiv: 1109.5567 | DOI | MR | Zbl

[8] Dunkl C. F., “Reflection groups and orthogonal polynomials on the sphere”, Math. Z., 197 (1988), 33–60 | DOI | MR | Zbl

[9] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[10] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl

[11] Dunkl C. F., “Symmetric functions and $B_N$-invariant spherical harmonics”, J. Phys. A: Math. Gen., 35 (2002), 10391–10408, arXiv: math.CA/0207122 | DOI | MR | Zbl

[12] Erdélyi A., “Asymptotic forms for Laguerre polynomials”, J. Indian Math. Soc., 24 (1960), 235–250 | MR

[13] Genest V. X., Vinet L., Zhedanov A., “The singular and the $2:1$ anisotropic Dunkl oscillators in the plane”, J. Phys. A: Math. Theor., 46 (2013), 325201, 17 pp., arXiv: 1305.2126 | DOI | MR | Zbl

[14] Kato T., Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl

[15] Muckenhoupt B., “Asymptotic forms for Laguerre polynomials”, Proc. Amer. Math. Soc., 24 (1970), 288–292 | DOI | MR | Zbl

[16] Muckenhoupt B., “Mean convergence of Laguerre and Hermite series. II”, Trans. Amer. Math. Soc., 147 (1970), 433–460 | DOI | MR

[17] Nagase M., “$L^{2}$-cohomology and intersection homology of stratified spaces”, Duke Math. J., 50 (1983), 329–368 | DOI | MR | Zbl

[18] Nagase M., “Sheaf theoretic $L^2$-cohomology”, Complex Analytic Singularities, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987, 273–279 | MR

[19] Nowak A., Stempak K., “Imaginary powers of the Dunkl harmonic oscillator”, SIGMA, 5 (2009), 016, 12 pp., arXiv: 0902.1958 | DOI | MR | Zbl

[20] Nowak A., Stempak K., “Riesz transforms for the Dunkl harmonic oscillator”, Math. Z., 262 (2009), 539–556, arXiv: 0802.0474 | DOI | MR | Zbl

[21] Plyushchay M., “Hidden nonlinear supersymmetries in pure parabosonic systems”, Internat. J. Modern Phys. A, 15 (2000), 3679–3698, arXiv: hep-th/9903130 | DOI | MR | Zbl

[22] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | Zbl

[23] Rosenblum M., “Generalized Hermite polynomials and the Bose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, eds. A. Feintuch, I. Gohberg, Birkhäuser, Basel, 1994, 369–396, arXiv: math.CA/9307224 | MR | Zbl

[24] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542, arXiv: q-alg/9703006 | DOI | MR | Zbl

[25] Rösler M., “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, eds. E. Koelink, W. Van Assche, Springer, Berlin, 2003, 93–135, arXiv: math.CA/0210366 | DOI | Zbl

[26] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR

[27] van Diejen J. F., Vinet L. (eds.), Calogero–Moser–Sutherland models, CRM Series in Mathematical Physics, Springer-Verlag, New York, 2000 | DOI | MR | Zbl

[28] Yang L. M., “A note on the quantum rule of the harmonic oscillator”, Phys. Rev., 84 (1951), 788–790 | DOI | MR | Zbl