Modular Classes of Lie Groupoid Representations up to Homotopy
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a construction of the modular class associated to a representation up to homotopy of a Lie groupoid. In the case of the adjoint representation up to homotopy, this class is the obstruction to the existence of a volume form, in the sense of Weinstein's “The volume of a differentiable stack”.
Keywords: Lie groupoid; representation up to homotopy; modular class.
@article{SIGMA_2015_11_a57,
     author = {Rajan Amit Mehta},
     title = {Modular {Classes} of {Lie} {Groupoid} {Representations} up to {Homotopy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a57/}
}
TY  - JOUR
AU  - Rajan Amit Mehta
TI  - Modular Classes of Lie Groupoid Representations up to Homotopy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a57/
LA  - en
ID  - SIGMA_2015_11_a57
ER  - 
%0 Journal Article
%A Rajan Amit Mehta
%T Modular Classes of Lie Groupoid Representations up to Homotopy
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a57/
%G en
%F SIGMA_2015_11_a57
Rajan Amit Mehta. Modular Classes of Lie Groupoid Representations up to Homotopy. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a57/

[1] Arias Abad C., Crainic M., “Representations up to homotopy and Bott's spectral sequence for Lie groupoids”, Adv. Math., 248 (2013), 416–452, arXiv: 0911.2859 | DOI | MR | Zbl

[2] Crainic M., “Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes”, Comment. Math. Helv., 78 (2003), 681–721, arXiv: math.DG/0008064 | DOI | MR | Zbl

[3] Crainic M., Fernandes R. L., “Secondary characteristic classes of Lie algebroids”, Quantum Field Theory and Noncommutative Geometry, Lecture Notes in Phys., 662, Springer, Berlin, 2005, 157–176 | DOI | MR | Zbl

[4] del Hoyo M. L., Fernandes R. L., Riemannian metrics on Lie groupoids, arXiv: 1404.5989

[5] Evens S., Lu J.-H., Weinstein A., “Transverse measures, the modular class and a cohomology pairing for Lie algebroids”, Quart. J. Math. Oxford Ser. (2), 50 (1999), 417–436, arXiv: dg-ga/9610008 | DOI | MR | Zbl

[6] Fernandes R. L., “Lie algebroids, holonomy and characteristic classes”, Adv. Math., 170 (2002), 119–179, arXiv: math.DG/0007132 | DOI | MR | Zbl

[7] Gracia-Saz A., Mehta R. A., “Lie algebroid structures on double vector bundles and representation theory of Lie algebroids”, Adv. Math., 223 (2010), 1236–1275, arXiv: 0810.0066 | DOI | MR | Zbl

[8] Gracia-Saz A., Mehta R. A., VB-groupoids and representation theory of Lie groupoids, arXiv: 1007.3658

[9] Kosmann-Schwarzbach Y., “Poisson manifolds, Lie algebroids, modular classes: a survey”, SIGMA, 4 (2008), 005, 30 pp., arXiv: 0710.3098 | DOI | MR | Zbl

[10] Mehta R. A., Supergroupoids, double structures, and equivariant cohomology, Ph.D. Thesis, University of California, Berkeley, 2006, arXiv: math.DG/0605356 | MR

[11] Mehta R. A., “Lie algebroid modules and representations up to homotopy”, Indag. Math. (N.S.), 25 (2014), 1122–1134, arXiv: 1107.1539 | DOI | MR | Zbl

[12] Weinstein A., “The volume of a differentiable stack”, Lett. Math. Phys., 90 (2009), 353–371, arXiv: 0809.2130 | DOI | MR | Zbl

[13] Weinstein A., Xu P., “Extensions of symplectic groupoids and quantization”, J. Reine Angew. Math., 417 (1991), 159–189 | DOI | MR | Zbl

[14] Yamagami S., “Modular cohomology class of foliation and Takesaki's duality”, Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986, 415–439 | MR