@article{SIGMA_2015_11_a56,
author = {Sarah Post},
title = {Racah {Polynomials} and {Recoupling} {Schemes} of $\mathfrak{su}(1,1)$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a56/}
}
Sarah Post. Racah Polynomials and Recoupling Schemes of $\mathfrak{su}(1,1)$. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a56/
[1] Capel J. J., Kress J. M., “Invariant classification of second-order conformally flat superintegrable systems”, J. Phys. A: Math. Theor., 47 (2014), 495202, 33 pp., arXiv: 1406.3136 | DOI | MR | Zbl
[2] Capel J. J., Kress J. M., Post S., “Invariant classification and limits of maximally superintegrable systems in 3D”, SIGMA, 11 (2015), 038, 17 pp., arXiv: 1501.06601 | DOI | MR | Zbl
[3] Gao S., Wang Y., Hou B., “The classification of Leonard triples of Racah type”, Linear Algebra Appl., 439 (2013), 1834–1861 | DOI | MR | Zbl
[4] Genest V. X., Vinet L., “The generic superintegrable system on the 3-sphere and the $9j$ symbols of ${\mathfrak{su}}(1,1)$”, SIGMA, 10 (2014), 108, 28 pp., arXiv: 1404.0876 | DOI | MR | Zbl
[5] Genest V. X., Vinet L., “The multivariate Hahn polynomials and the singular oscillator”, J. Phys. A: Math. Theor., 47 (2014), 455201, 39 pp., arXiv: 1406.6719 | DOI | MR | Zbl
[6] Genest V. X., Vinet L., Zhedanov A., “Superintegrability in two dimensions and the Racah–Wilson algebra”, Lett. Math. Phys., 104 (2014), 931–952, arXiv: 1307.5539 | DOI | MR | Zbl
[7] Geronimo J. S., Iliev P., “Bispectrality of multivariable Racah–Wilson polynomials”, Constr. Approx., 31 (2010), 417–457, arXiv: 0705.1469 | DOI | MR | Zbl
[8] Goodman R., Wallach N. R., Symmetry, representations, and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009 | DOI | MR | Zbl
[9] Granovskiĭ Ya. I., Lutzenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Physics, 217 (1992), 1–20 | DOI | MR | Zbl
[10] Humphreys J. E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York–Berlin, 1972 | DOI | MR | Zbl
[11] Iliev P., “Bispectral commuting difference operators for multivariable Askey–Wilson polynomials”, Trans. Amer. Math. Soc., 363 (2011), 1577–1598, arXiv: 0801.4939 | DOI | MR | Zbl
[12] Kalnins E. G., Miller W. (Jr.), “Quadratic algebra contractions and second-order superintegrable systems”, Anal. Appl. (Singap.), 12 (2014), 583–612, arXiv: 1401.0830 | DOI | MR | Zbl
[13] Kalnins E. G., Miller W. (Jr.), Post S., “Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere”, SIGMA, 7 (2011), 051, 26 pp., arXiv: 1010.3032 | DOI | MR | Zbl
[14] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI | MR | Zbl
[15] Koornwinder T. H., “The relationship between Zhedanov's algebra ${\rm AW}(3)$ and the double affine Hecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., arXiv: math.QA/0612730 | DOI | MR | Zbl
[16] Koornwinder T. H., “Zhedanov's algebra $\rm AW(3)$ and the double affine Hecke algebra in the rank one case. II: The spherical subalgebra”, SIGMA, 4 (2008), 052, 17 pp., arXiv: 0711.2320 | DOI | MR | Zbl
[17] Miller W. (Jr.), Li Q., “Wilson polynomials/functions and intertwining operators for the generic quantum superintegrable system on the 2-sphere”, J. Phys. Conf. Ser., 597 (2015), 012059, 11 pp., arXiv: 1411.2112 | DOI
[18] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[19] Terwilliger P., “The universal Askey–Wilson algebra and the equitable presentation of $U_q({\mathfrak{sl}}_2)$”, SIGMA, 7 (2011), 099, 26 pp., arXiv: 1107.3544 | DOI | MR | Zbl
[20] Tratnik M. V., “Some multivariable orthogonal polynomials of the Askey tableau-discrete families”, J. Math. Phys., 32 (1991), 2337–2342 | DOI | MR | Zbl
[21] Zhedanov A., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl