Racah Polynomials and Recoupling Schemes of $\mathfrak{su}(1,1)$
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The connection between the recoupling scheme of four copies of $\mathfrak{su}(1,1)$, the generic superintegrable system on the 3 sphere, and bivariate Racah polynomials is identified. The Racah polynomials are presented as connection coefficients between eigenfunctions separated in different spherical coordinate systems and equivalently as different irreducible decompositions of the tensor product representations. As a consequence of the model, an extension of the quadratic algebra ${\rm QR}(3)$ is given. It is shown that this algebra closes only with the inclusion of an additional shift operator, beyond the eigenvalue operators for the bivariate Racah polynomials, whose polynomial eigenfunctions are determined. The duality between the variables and the degrees, and hence the bispectrality of the polynomials, is interpreted in terms of expansion coefficients of the separated solutions.
Keywords: orthogonal polynomials; Lie algebras; representation theory.
@article{SIGMA_2015_11_a56,
     author = {Sarah Post},
     title = {Racah {Polynomials} and {Recoupling} {Schemes} of $\mathfrak{su}(1,1)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a56/}
}
TY  - JOUR
AU  - Sarah Post
TI  - Racah Polynomials and Recoupling Schemes of $\mathfrak{su}(1,1)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a56/
LA  - en
ID  - SIGMA_2015_11_a56
ER  - 
%0 Journal Article
%A Sarah Post
%T Racah Polynomials and Recoupling Schemes of $\mathfrak{su}(1,1)$
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a56/
%G en
%F SIGMA_2015_11_a56
Sarah Post. Racah Polynomials and Recoupling Schemes of $\mathfrak{su}(1,1)$. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a56/

[1] Capel J. J., Kress J. M., “Invariant classification of second-order conformally flat superintegrable systems”, J. Phys. A: Math. Theor., 47 (2014), 495202, 33 pp., arXiv: 1406.3136 | DOI | MR | Zbl

[2] Capel J. J., Kress J. M., Post S., “Invariant classification and limits of maximally superintegrable systems in 3D”, SIGMA, 11 (2015), 038, 17 pp., arXiv: 1501.06601 | DOI | MR | Zbl

[3] Gao S., Wang Y., Hou B., “The classification of Leonard triples of Racah type”, Linear Algebra Appl., 439 (2013), 1834–1861 | DOI | MR | Zbl

[4] Genest V. X., Vinet L., “The generic superintegrable system on the 3-sphere and the $9j$ symbols of ${\mathfrak{su}}(1,1)$”, SIGMA, 10 (2014), 108, 28 pp., arXiv: 1404.0876 | DOI | MR | Zbl

[5] Genest V. X., Vinet L., “The multivariate Hahn polynomials and the singular oscillator”, J. Phys. A: Math. Theor., 47 (2014), 455201, 39 pp., arXiv: 1406.6719 | DOI | MR | Zbl

[6] Genest V. X., Vinet L., Zhedanov A., “Superintegrability in two dimensions and the Racah–Wilson algebra”, Lett. Math. Phys., 104 (2014), 931–952, arXiv: 1307.5539 | DOI | MR | Zbl

[7] Geronimo J. S., Iliev P., “Bispectrality of multivariable Racah–Wilson polynomials”, Constr. Approx., 31 (2010), 417–457, arXiv: 0705.1469 | DOI | MR | Zbl

[8] Goodman R., Wallach N. R., Symmetry, representations, and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009 | DOI | MR | Zbl

[9] Granovskiĭ Ya. I., Lutzenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Physics, 217 (1992), 1–20 | DOI | MR | Zbl

[10] Humphreys J. E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York–Berlin, 1972 | DOI | MR | Zbl

[11] Iliev P., “Bispectral commuting difference operators for multivariable Askey–Wilson polynomials”, Trans. Amer. Math. Soc., 363 (2011), 1577–1598, arXiv: 0801.4939 | DOI | MR | Zbl

[12] Kalnins E. G., Miller W. (Jr.), “Quadratic algebra contractions and second-order superintegrable systems”, Anal. Appl. (Singap.), 12 (2014), 583–612, arXiv: 1401.0830 | DOI | MR | Zbl

[13] Kalnins E. G., Miller W. (Jr.), Post S., “Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere”, SIGMA, 7 (2011), 051, 26 pp., arXiv: 1010.3032 | DOI | MR | Zbl

[14] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI | MR | Zbl

[15] Koornwinder T. H., “The relationship between Zhedanov's algebra ${\rm AW}(3)$ and the double affine Hecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., arXiv: math.QA/0612730 | DOI | MR | Zbl

[16] Koornwinder T. H., “Zhedanov's algebra $\rm AW(3)$ and the double affine Hecke algebra in the rank one case. II: The spherical subalgebra”, SIGMA, 4 (2008), 052, 17 pp., arXiv: 0711.2320 | DOI | MR | Zbl

[17] Miller W. (Jr.), Li Q., “Wilson polynomials/functions and intertwining operators for the generic quantum superintegrable system on the 2-sphere”, J. Phys. Conf. Ser., 597 (2015), 012059, 11 pp., arXiv: 1411.2112 | DOI

[18] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl

[19] Terwilliger P., “The universal Askey–Wilson algebra and the equitable presentation of $U_q({\mathfrak{sl}}_2)$”, SIGMA, 7 (2011), 099, 26 pp., arXiv: 1107.3544 | DOI | MR | Zbl

[20] Tratnik M. V., “Some multivariable orthogonal polynomials of the Askey tableau-discrete families”, J. Math. Phys., 32 (1991), 2337–2342 | DOI | MR | Zbl

[21] Zhedanov A., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl