@article{SIGMA_2015_11_a54,
author = {Yael Karshon and Eugene Lerman},
title = {Non-Compact {Symplectic} {Toric} {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a54/}
}
Yael Karshon; Eugene Lerman. Non-Compact Symplectic Toric Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a54/
[1] Atiyah M. F., “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14 (1982), 1–15 | DOI | MR | Zbl
[2] Bates L. M., “Examples for obstructions to action-angle coordinates”, Proc. Roy. Soc. Edinburgh Sect. A, 110 (1988), 27–30 | DOI | MR | Zbl
[3] Boucetta M., Molino P., “Géométrie globale des systèmes hamiltoniens complètement intégrables: fibrations lagrangiennes singulières et coordonnées action-angle à singularités”, C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 421–424 | MR | Zbl
[4] Condevaux M., Dazord P., Molino P., “Géométrie du moment”, Travaux du Séminaire Sud–Rhodanien de {G}éométrie, v. I, Publ. Dép. Math. Nouvelle Sér. B, 88, Univ. Claude-Bernard, Lyon, 1988, 131–160 | MR
[5] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62 (1991), 417–451 | DOI | MR | Zbl
[6] Dazord P., Delzant T., “Le problème général des variables actions-angles”, J. Differential Geom., 26 (1987), 223–251 | MR | Zbl
[7] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. Math. France, 116 (1988), 315–339 | MR | Zbl
[8] Duistermaat J. J., “On global action-angle coordinates”, Comm. Pure Appl. Math., 33 (1980), 687–706 | DOI | MR | Zbl
[9] Duistermaat J. J., Pelayo A., “Reduced phase space and toric variety coordinatizations of Delzant spaces”, Math. Proc. Cambridge Philos. Soc., 146 (2009), 695–718, arXiv: 0704.0430 | DOI | MR | Zbl
[10] Guillemin V., Sternberg S., “Convexity properties of the moment mapping”, Invent. Math., 67 (1982), 491–513 | DOI | MR | Zbl
[11] Guillemin V., Sternberg S., “A normal form for the moment map”, Differential Geometric Methods in Mathematical Physics (Jerusalem, 1982), Math. Phys. Stud., 6, Reidel, Dordrecht, 1984, 161–175 | MR
[12] Haefliger A., Salem É., “Actions of tori on orbifolds”, Ann. Global Anal. Geom., 9 (1991), 37–59 | DOI | MR | Zbl
[13] Jänich K., “On the classification of $O(n)$-manifolds”, Math. Ann., 176 (1968), 53–76 | DOI | MR | Zbl
[14] Joyce D., “On manifolds with corners”, Advances in Geometric Analysis, Adv. Lect. Math. (ALM), 21, Int. Press, Somerville, MA, 2012, 225–258, arXiv: 0910.3518 | MR | Zbl
[15] Karshon Y., “Appendix (to D. McDuff and L. Polterovich)”, Invent. Math., 115 (1994), 431–434 | DOI | MR | Zbl
[16] Lerman E., “Symplectic cuts”, Math. Res. Lett., 2 (1995), 247–258 | DOI | MR | Zbl
[17] Lerman E., “Contact toric manifolds”, J. Symplectic Geom., 1 (2002), 785–828, arXiv: math.SG/0107201 | DOI | MR
[18] Lerman E., Meinrenken E., Tolman S., Woodward C., “Nonabelian convexity by symplectic cuts”, Topology, 37 (1998), 245–259, arXiv: dg-ga/9603015 | DOI | MR | Zbl
[19] Lerman E., Tolman S., “Hamiltonian torus actions on symplectic orbifolds and toric varieties”, Trans. Amer. Math. Soc., 349 (1997), 4201–4230, arXiv: dg-ga/9511008 | DOI | MR | Zbl
[20] Lukina O. V., Takens F., Broer H. W., “Global properties of integrable Hamiltonian systems”, Regul. Chaotic Dyn., 13 (2008), 602–644 | DOI | MR | Zbl
[21] Marle C.-M., “Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique”, Rend. Sem. Mat. Univ. Politec. Torino, 43 (1985), 227–251 | MR | Zbl
[22] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl
[23] Meinrenken E., Symplectic geometry, Unpublished lecture notes, 2000 http://www.math.toronto.edu/mein/
[24] Meyer K. R., “Symmetries and integrals in mechanics”, Dynamical Systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 259–272 | MR
[25] Michor P. W., Manifolds of differentiable mappings, Shiva Mathematics Series, 3, Shiva Publishing Ltd., Nantwich, 1980 | MR | Zbl
[26] Montaldi J., “Persistence and stability of relative equilibria”, Nonlinearity, 10 (1997), 449–466 | DOI | MR | Zbl
[27] Moser J., “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl
[28] Nielsen L. T., “Transversality and the inverse image of a submanifold with corners”, Math. Scand., 49 (1981), 211–221 | MR | Zbl
[29] Schwarz G. W., “Smooth functions invariant under the action of a compact Lie group”, Topology, 14 (1975), 63–68 | DOI | MR | Zbl
[30] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math., 134 (1991), 375–422 | DOI | MR | Zbl
[31] Yoshida T., “Local torus actions modeled on the standard representation”, Adv. Math., 227 (2011), 1914–1955, arXiv: 0710.2166 | DOI | MR | Zbl
[32] Zung N. T., “Symplectic topology of integrable Hamiltonian systems. II: Topological classification”, Compositio Math., 138 (2003), 125–156, arXiv: math.DG/0010181 | DOI | MR | Zbl