Eigenvalue Estimates of the ${\mathop{\rm spin}^c}$ Dirac Operator and Harmonic Forms on Kähler–Einstein Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish a lower bound for the eigenvalues of the Dirac operator defined on a compact Kähler–Einstein manifold of positive scalar curvature and endowed with particular ${\mathop{\rm spin}^c}$ structures. The limiting case is characterized by the existence of Kählerian Killing ${\mathop{\rm spin}^c}$ spinors in a certain subbundle of the spinor bundle. Moreover, we show that the Clifford multiplication between an effective harmonic form and a Kählerian Killing ${\mathop{\rm spin}^c}$ spinor field vanishes. This extends to the ${\mathop{\rm spin}^c}$ case the result of A. Moroianu stating that, on a compact Kähler–Einstein manifold of complex dimension $4\ell+3$ carrying a complex contact structure, the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinor is zero.
Keywords: ${\mathop{\rm spin}^c}$ Dirac operator; eigenvalue estimate; Kählerian Killing spinor; parallel form; harmonic form.
@article{SIGMA_2015_11_a53,
     author = {Roger Nakad and Mihaela Pilca},
     title = {Eigenvalue {Estimates} of the ${\mathop{\rm spin}^c}$ {Dirac} {Operator} and {Harmonic} {Forms} on {K\"ahler{\textendash}Einstein} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a53/}
}
TY  - JOUR
AU  - Roger Nakad
AU  - Mihaela Pilca
TI  - Eigenvalue Estimates of the ${\mathop{\rm spin}^c}$ Dirac Operator and Harmonic Forms on Kähler–Einstein Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a53/
LA  - en
ID  - SIGMA_2015_11_a53
ER  - 
%0 Journal Article
%A Roger Nakad
%A Mihaela Pilca
%T Eigenvalue Estimates of the ${\mathop{\rm spin}^c}$ Dirac Operator and Harmonic Forms on Kähler–Einstein Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a53/
%G en
%F SIGMA_2015_11_a53
Roger Nakad; Mihaela Pilca. Eigenvalue Estimates of the ${\mathop{\rm spin}^c}$ Dirac Operator and Harmonic Forms on Kähler–Einstein Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a53/

[1] Atiyah M. F., Singer I. M., “The index of elliptic operators, I”, Ann. of Math., 87 (1968), 484–530 | DOI | MR | Zbl

[2] Bär C., “Real Killing spinors and holonomy”, Comm. Math. Phys., 154 (1993), 509–521 | DOI | MR | Zbl

[3] Bär C., “Extrinsic bounds for eigenvalues of the Dirac operator”, Ann. Global Anal. Geom., 16 (1998), 573–596 | DOI | MR | Zbl

[4] Bourguignon J.-P., Hijazi O., Milhorat J.-L., Moroianu A., Moroianu S., A spinorial approach to Riemannian and conformal geometry, EMS Monographs in Mathematics, European Mathematical Society, 2015 | Zbl

[5] Donaldson S. K., “The Seiberg–Witten equations and $4$-manifold topology”, Bull. Amer. Math. Soc., 33 (1996), 45–70 | DOI | MR | Zbl

[6] Friedrich Th., “Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung”, Math. Nachr., 97 (1980), 117–146 | DOI | MR | Zbl

[7] Friedrich Th., Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, 25, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[8] Gursky M. J., LeBrun C., “Yamabe invariants and ${\rm Spin}^c$ structures”, Geom. Funct. Anal., 8 (1998), 965–977, arXiv: dg-ga/9708002 | DOI | MR | Zbl

[9] Herzlich M., Moroianu A., “Generalized Killing spinors and conformal eigenvalue estimates for ${\rm Spin}^c$ manifolds”, Ann. Global Anal. Geom., 17 (1999), 341–370 | DOI | MR | Zbl

[10] Hijazi O., “A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors”, Comm. Math. Phys., 104 (1986), 151–162 | DOI | MR | Zbl

[11] Hijazi O., “Eigenvalues of the Dirac operator on compact Kähler manifolds”, Comm. Math. Phys., 160 (1994), 563–579 | DOI | MR | Zbl

[12] Hijazi O., Montiel S., Urbano F., “${\rm Spin}^c$ geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds”, Math. Z., 253 (2006), 821–853 | DOI | MR | Zbl

[13] Hijazi O., Montiel S., Zhang X., “Dirac operator on embedded hypersurfaces”, Math. Res. Lett., 8 (2001), 195–208, arXiv: math.DG/0012262 | DOI | MR | Zbl

[14] Hijazi O., Montiel S., Zhang X., “Eigenvalues of the Dirac operator on manifolds with boundary”, Comm. Math. Phys., 221 (2001), 255–265, arXiv: math.DG/0012261 | DOI | MR | Zbl

[15] Hijazi O., Montiel S., Zhang X., “Conformal lower bounds for the Dirac operator of embedded hypersurfaces”, Asian J. Math., 6 (2002), 23–36 | MR | Zbl

[16] Hijazi O., Zhang X., “Lower bounds for the eigenvalues of the Dirac operator. I: The hypersurface Dirac operator”, Ann. Global Anal. Geom., 19 (2001), 355–376 | DOI | MR | Zbl

[17] Hijazi O., Zhang X., “Lower bounds for the eigenvalues of the Dirac operator. II: The submanifold Dirac operator”, Ann. Global Anal. Geom., 20 (2001), 163–181 | DOI | MR | Zbl

[18] Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl

[19] Kirchberg K.-D., “An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature”, Ann. Global Anal. Geom., 4 (1986), 291–325 | DOI | MR | Zbl

[20] Kirchberg K.-D., “The first eigenvalue of the Dirac operator on Kähler manifolds”, J. Geom. Phys., 7 (1990), 449–468 | DOI | MR | Zbl

[21] Kirchberg K.-D., “Killing spinors on Kähler manifolds”, Ann. Global Anal. Geom., 11 (1993), 141–164 | DOI | MR | Zbl

[22] Kirchberg K.-D., “Eigenvalue estimates for the Dirac operator on Kähler–Einstein manifolds of even complex dimension”, Ann. Global Anal. Geom., 38 (2010), 273–284, arXiv: 0912.1451 | DOI | MR | Zbl

[23] Kirchberg K.-D., Semmelmann U., “Complex contact structures and the first eigenvalue of the Dirac operator on Kähler manifolds”, Geom. Funct. Anal., 5 (1995), 604–618 | DOI | MR | Zbl

[24] Lawson H. B., Michelsohn M.-L., Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[25] LeBrun C., “Einstein metrics and Mostow rigidity”, Math. Res. Lett., 2 (1995), 1–8, arXiv: dg-ga/9411005 | DOI | MR | Zbl

[26] LeBrun C., “Four-manifolds without Einstein metrics”, Math. Res. Lett., 3 (1996), 133–147, arXiv: dg-ga/9511015 | DOI | MR | Zbl

[27] Lichnerowicz A., “Spineurs harmoniques”, C. R. Acad. Sci. Paris, 257 (1963), 7–9 | MR | Zbl

[28] Moroianu A., “La première valeur propre de l'opérateur de Dirac sur les variétés kählériennes compactes”, Comm. Math. Phys., 169 (1995), 373–384 | DOI | MR | Zbl

[29] Moroianu A., “Formes harmoniques en présence de spineurs de Killing kählériens”, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 679–684 | MR | Zbl

[30] Moroianu A., “On Kirchberg's inequality for compact Kähler manifolds of even complex dimension”, Ann. Global Anal. Geom., 15 (1997), 235–242 | DOI | MR | Zbl

[31] Moroianu A., “Parallel and Killing spinors on ${\rm Spin}^c$ manifolds”, Comm. Math. Phys., 187 (1997), 417–427 | DOI | MR | Zbl

[32] Moroianu A., Lectures on Kähler geometry, London Mathematical Society Student Texts, 69, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl

[33] Moroianu A., Semmelmann U., “Kählerian Killing spinors, complex contact structures and twistor spaces”, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 57–61, arXiv: dg-ga/9502003 | MR | Zbl

[34] Nakad R., Special submanifolds of ${\rm Spin}^c$ manifolds, Ph.D. Thesis, Institut Élie Cartan, France, 2011

[35] Nakad R., Roth J., “Hypersurfaces of ${\rm Spin}^c$ manifolds and Lawson type correspondence”, Ann. Global Anal. Geom., 42 (2012), 421–442, arXiv: 1203.3034 | DOI | MR | Zbl

[36] Pilca M., “Kählerian twistor spinors”, Math. Z., 268 (2011), 223–255, arXiv: 0812.3315 | DOI | MR | Zbl

[37] Seiberg N., Witten E., “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nuclear Phys. B, 431 (1994), 484–550, arXiv: hep-th/9408099 | DOI | MR | Zbl

[38] Wang M. Y., “Parallel spinors and parallel forms”, Ann. Global Anal. Geom., 7 (1989), 59–68 | DOI | MR | Zbl

[39] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–796, arXiv: hep-th/9411102 | DOI | MR | Zbl