@article{SIGMA_2015_11_a51,
author = {Francisco Jos\'e Plaza Mart{\'\i}n},
title = {Algebro-Geometric {Solutions} of the {Generalized} {Virasoro} {Constraints}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a51/}
}
Francisco José Plaza Martín. Algebro-Geometric Solutions of the Generalized Virasoro Constraints. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a51/
[1] Adler M., Morozov A., Shiota T., van Moerbeke P., “A matrix integral solution to $[P,Q]=P$ and matrix Laplace transforms”, Comm. Math. Phys., 180 (1996), 233–263, arXiv: hep-th/9610137 | DOI | MR | Zbl
[2] Alexandrov A., “Enumerative geometry, tau-functions and Heisenberg–Virasoro algebra”, Comm. Math. Phys., 338 (2015), 195–249, arXiv: 1404.3402 | DOI | MR | Zbl
[3] Álvarez Vázquez A., Muñoz Porras J. M., Plaza Martín F. J., “The algebraic formalism of soliton equation over arbitrary base fields”, Taller de Variedades Abelianas y Funciones Theta (Morelia, 1996), Aportaciones Matemáticas: Investigación, 13, eds. R. Rodríguez, J. M. Muñóz Porras, S. Recillas, Sociedad Matemática Mexicana, México, 1998, 3–40, arXiv: alg-geom/9606009 | MR | Zbl
[4] Beauville A., Narasimhan M. S., Ramanan S., “Spectral curves and the generalised theta divisor”, J. Reine Angew. Math., 398 (1989), 169–179 | DOI | MR | Zbl
[5] Beĭlinson A. A., Schechtman V. V., “Determinant bundles and Virasoro algebras”, Comm. Math. Phys., 118 (1988), 651–701 | DOI | MR
[6] Bouchard V., Mariño M., “Hurwitz numbers, matrix models and enumerative geometry”, From Hodge Theory to Integrability and TQFT $tt^*$-Geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 263–283, arXiv: 0709.1458 | DOI | MR | Zbl
[7] Dijkgraaf R., “Intersection theory, integrable hierarchies and topological field theory”, New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, Plenum, New York, 1992, 95–158, arXiv: hep-th/9201003 | MR | Zbl
[8] Dijkgraaf R., Verlinde H., Verlinde E., “Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity”, Nuclear Phys. B, 348 (1991), 435–456 | DOI | MR
[9] Douglas M. R., “Strings in less than one dimension and the generalized KdV hierarchies”, Phys. Lett. B, 238 (1990), 176–180 | DOI | MR
[10] Dubrovin B., Zhang Y., “Frobenius manifolds and Virasoro constraints”, Selecta Math. (N.S.), 5 (1999), 423–466, arXiv: math.AG/9808048 | DOI | MR | Zbl
[11] Eynard B., Mariño M., “A holomorphic and background independent partition function for matrix models and topological strings”, J. Geom. Phys., 61 (2011), 1181–1202, arXiv: 0810.4273 | DOI | MR | Zbl
[12] Eynard B., Orantin N., “Invariants of algebraic curves and topological expansion”, Commun. Number Theory Phys., 1 (2007), 347–452, arXiv: math-ph/0702045 | DOI | MR | Zbl
[13] Eynard B., Orantin N., Geometrical interpretation of the topological recursion, and integrable string theories, arXiv: 0911.5096
[14] Frenkel E., Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, 103, Cambridge University Press, Cambridge, 2007 | MR | Zbl
[15] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, 2nd ed., Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[16] Frenkel E., Kac V., Radul A., Wang W., “${\mathcal W}_{1+\infty}$ and ${\mathcal W}({\mathfrak{gl}}_N)$ with central charge $N$”, Comm. Math. Phys., 170 (1995), 337–357, arXiv: hep-th/9405121 | DOI | MR | Zbl
[17] Givental A. B., “Gromov–Witten invariants and quantization of quadratic Hamiltonians”, Mosc. Math. J., 1 (2001), 551–568, arXiv: math.AG/0108100 | MR | Zbl
[18] Gómez González E., Hernández Serrano D., Muñoz Porras J. M., Plaza Martín F. J., “Geometric approach to Kac–Moody and Virasoro algebras”, J. Geom. Phys., 62 (2012), 1984–1997 | DOI | MR | Zbl
[19] Kac V. G., Peterson D. H., “Spin and wedge representations of infinite-dimensional Lie algebras and groups”, Proc. Nat. Acad. Sci. USA, 78, 1981, 3308–3312 | MR | Zbl
[20] Kac V. G., Raina A. K., Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987 | MR | Zbl
[21] Kac V. G., Schwarz A., “Geometric interpretation of the partition function of $2$D gravity”, Phys. Lett. B, 257 (1991), 329–334 | DOI | MR
[22] Katsura T., Shimizu Y., Ueno K., “Complex cobordism ring and conformal field theory over $\mathbf{Z}$”, Math. Ann., 291 (1991), 551–571 | DOI | MR | Zbl
[23] Kazarian M., “KP hierarchy for Hodge integrals”, Adv. Math., 221 (2009), 1–21, arXiv: 0809.3263 | DOI | MR | Zbl
[24] Kirillov A. A., “Geometric approach to discrete series of unirreps for Vir”, J. Math. Pures Appl., 77 (1998), 735–746 | DOI | MR | Zbl
[25] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl
[26] Laine I., Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15, Walter de Gruyter Co., Berlin, 1993 | DOI | MR
[27] Liu K., Xu H., “Recursion formulae of higher Weil–Petersson volumes”, Int. Math. Res. Not., 2009 (2009), 835–859, arXiv: 0708.0565 | DOI | MR | Zbl
[28] Mironov A., Morozov A., “Virasoro constraints for Kontsevich–Hurwitz partition function”, J. High Energy Phys., 2009:2 (2009), 024, 52 pp., arXiv: 0807.2843 | DOI | MR | Zbl
[29] Mirzakhani M., “Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces”, Invent. Math., 167 (2007), 179–222 | DOI | MR | Zbl
[30] Mirzakhani M., “Weil–Petersson volumes and intersection theory on the moduli space of curves”, J. Amer. Math. Soc., 20 (2007), 1–23 | DOI | MR | Zbl
[31] Mulase M., “Algebraic theory of the KP equations”, Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, 151–217 | MR | Zbl
[32] Mulase M., Safnuk B., “Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy”, Indian J. Math., 50 (2008), 189–218, arXiv: math.QA/0601194 | MR | Zbl
[33] Mulase M., Zhang N., “Polynomial recursion formula for linear Hodge integrals”, Commun. Number Theory Phys., 4 (2010), 267–293, arXiv: 0908.2267 | DOI | MR | Zbl
[34] Muñoz Porras J. M., Plaza Martín F. J., “Automorphism group of $k((t))$: applications to the bosonic string”, Comm. Math. Phys., 216 (2001), 609–634, arXiv: hep-th/9903250 | DOI | MR | Zbl
[35] Plaza Martín F. J., “Arithmetic infinite Grassmannians and the induced central extensions”, Collect. Math., 61 (2010), 107–129, arXiv: 0810.0354 | DOI | MR | Zbl
[36] Plaza Martín F. J., “Representations of the Witt algebra and $\mathrm{Gl}(n)$-opers”, Lett. Math. Phys., 103 (2013), 1079–1101 | DOI | MR | Zbl
[37] Schwarz A., “On solutions to the string equation”, Modern Phys. Lett. A, 6 (1991), 2713–2725, arXiv: hep-th/9109015 | DOI | MR | Zbl
[38] Schwarz A., “Quantum curves”, Comm. Math. Phys., 338 (2015), 483–500, arXiv: 1401.1574 | DOI | MR | Zbl
[39] Segal G., Wilson G., “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 1985, 5–65 | MR | Zbl
[40] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, 243–310 | MR