@article{SIGMA_2015_11_a50,
author = {Luc Lapointe and Pierre Mathieu},
title = {From {Jack} to {Double} {Jack} {Polynomials} via the {Supersymmetric} {Bridge}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a50/}
}
Luc Lapointe; Pierre Mathieu. From Jack to Double Jack Polynomials via the Supersymmetric Bridge. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a50/
[1] Alarie-Vézina L., Desrosiers P., Mathieu P., “Ramond singular vectors and Jack superpolynomials”, J. Phys. A: Math. Theor., 47 (2014), 035202, 17 pp., arXiv: 1309.7965 | DOI | Zbl
[2] Alba V. A., Fateev V. A., Litvinov A. V., Tarnopolskiy G. M., “On combinatorial expansion of the conformal blocks arising from AGT conjecture”, Lett. Math. Phys., 98 (2011), 33–64, arXiv: 1012.1312 | DOI | MR | Zbl
[3] Alday L. F., Gaiotto D., Tachikawa Y., “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl
[4] Awata H., Matsuo Y., Odake S., Shiraishi J., “Collective field theory, Calogero–Sutherland model and generalized matrix models”, Phys. Lett. B, 347 (1995), 49–55, arXiv: hep-th/9411053 | DOI | MR | Zbl
[5] Awata H., Matsuo Y., Odake S., Shiraishi J., “Excited states of the Calogero–Sutherland model and singular vectors of the $W_N$ algebra”, Nuclear Phys. B, 449 (1995), 347–374, arXiv: hep-th/9503043 | DOI | MR | Zbl
[6] Bergeron F., Algebraic combinatorics and coinvariant spaces, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A.K. Peters, Ltd., Wellesley, MA, 2009 | DOI | MR | Zbl
[7] Bernevig B. A., Gurarie V., Simon S. H., “Central charge and quasihole scaling dimensions from model wavefunctions: toward relating Jack wavefunctions to ${\mathcal W}$-algebras”, J. Phys. A: Math. Theor., 42 (2009), 245206, 30 pp., arXiv: 0903.0635 | DOI | MR | Zbl
[8] Bernevig B. A., Haldane F. D. M., “Properties of non-Abelian fractional quantum Hall states at filling $\nu=k/r$”, Phys. Rev. Lett., 101 (2008), 246806, 4 pp., arXiv: 0803.2882 | DOI
[9] Blondeau-Fournier O., Lapointe L., Mathieu P., “Double Macdonald polynomials as the stable limit of Macdonald superpolynomials”, J. Algebraic Combin., 41 (2015), 397–459, arXiv: 1211.3186 | DOI | MR | Zbl
[10] Blondeau-Fournier O., Lapointe L., Mathieu P., “The supersymmetric Ruijsenaars–Schneider model”, Phys. Rev. Lett., 114 (2015), 121602, 5 pp., arXiv: 1403.4667 | DOI | MR
[11] Cardy J., “Calogero–Sutherland model and bulk-boundary correlations in conformal field theory”, Phys. Lett. B, 582 (2004), 121–126, arXiv: hep-th/0310291 | DOI | MR | Zbl
[12] Desrosiers P., Hallnäs M., “Hermite and Laguerre symmetric functions associated with operators of Calogero–Moser–Sutherland type”, SIGMA, 8 (2012), 049, 51 pp., arXiv: 1103.4593 | DOI | MR | Zbl
[13] Desrosiers P., Lapointe L., Mathieu P., “Supersymmetric Calogero–Moser–Sutherland models and Jack superpolynomials”, Nuclear Phys. B, 606 (2001), 547–582, arXiv: hep-th/0103178 | DOI | MR | Zbl
[14] Desrosiers P., Lapointe L., Mathieu P., “Jack polynomials in superspace”, Comm. Math. Phys., 242 (2003), 331–360, arXiv: hep-th/0209074 | DOI | MR | Zbl
[15] Desrosiers P., Lapointe L., Mathieu P., “Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals”, Comm. Math. Phys., 316 (2012), 395–440, arXiv: 1109.2832 | DOI | MR | Zbl
[16] Desrosiers P., Lapointe L., Mathieu P., “Superconformal field theory and Jack superpolynomials”, J. High Energy Phys., 2012:9 (2012), 037, 42 pp., arXiv: 1205.0784 | DOI | MR
[17] Doyon B., Cardy J., “Calogero–Sutherland eigenfunctions with mixed boundary conditions and conformal field theory correlators”, J. Phys. A: Math. Theor., 40 (2007), 2509–2540, arXiv: hep-th/0611054 | DOI | MR | Zbl
[18] Dunfield N. M., Gukov S., Rasmussen J., “The superpolynomial for knot homologies”, Experiment. Math., 15 (2006), 129–159, arXiv: math.GT/0505662 | DOI | MR | Zbl
[19] Estienne B., Santachiara R., “Relating Jack wavefunctions to $WA_{k-1}$ theories”, J. Phys. A: Math. Theor., 42 (2009), 445209, 15 pp., arXiv: 0906.1969 | DOI | MR | Zbl
[20] Feigin B., Jimbo M., Miwa T., Mukhin E., “A differential ideal of symmetric polynomials spanned by Jack polynomials at $\beta=-(r-1)/(k+1)$”, Int. Math. Res. Not., 2002 (2002), 1223–1237, arXiv: math.QA/0112127 | DOI | MR | Zbl
[21] Forrester P. J., Log-gases and random matrices, London Mathematical Society Monographs Series, 34, Princeton University Press, Princeton, NJ, 2010 | DOI | MR | Zbl
[22] Guhr T., Kohler H., “Supersymmetry and models for two kinds of interacting particles”, Phys. Rev. E, 71 (2004), 045102, 4 pp., arXiv: math-ph/0408033 | DOI | MR
[23] Kohler H., Guhr T., “Supersymmetric extensions of Calogero–Moser–Sutherland-like models: construction and some solutions”, J. Phys. A: Math. Gen., 38 (2005), 9891–9915, arXiv: math-ph/0510039 | DOI | MR | Zbl
[24] Kuramoto Y., Kato Y., Dynamics of one-dimensional quantum systems. Inverse-square interaction models, Cambridge University Press, Cambridge, 2009 | Zbl
[25] Lapointe L., Vinet L., “Exact operator solution of the Calogero–Sutherland model”, Comm. Math. Phys., 178 (1996), 425–452 | DOI | MR | Zbl
[26] Lascoux A., Symmetric functions and combinatorial operators on polynomials, Conference Board of the Mathematical Sciences, Washington, DC, CBMS Regional Conference Series in Mathematics, 99, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[27] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[28] Mimachi K., Yamada Y., “Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials”, Comm. Math. Phys., 174 (1995), 447–455 | DOI | MR | Zbl
[29] Minahan J. A., Polychronakos A. P., “Density-correlation functions in Calogero–Sutherland models”, Phys. Rev. B, 50 (1994), 4236–4239, arXiv: hep-th/9404192 | DOI
[30] Morozov A., Smirnov A., “Towards the proof of AGT relations with the help of the generalized Jack polynomials”, Lett. Math. Phys., 104 (2014), 585–612, arXiv: 1307.2576 | DOI | MR | Zbl
[31] Nekrasov N. A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | MR | Zbl
[32] Olshanetsky M. A., Perelomov A. M., “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71 (1981), 313–400 | DOI | MR
[33] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR
[34] Ridout D., Wood S., “From Jack polynomials to minimal model spectra”, J. Phys. A: Math. Theor., 48 (2015), 04520, 17 pp., arXiv: 1409.4847 | DOI | MR
[35] Ridout D., Wood S., “Relaxed singular vectors, Jack symmetric functions and fractional level $\widehat{\mathfrak{sl}}(2)$ models”, Nuclear Phys. B, 894 (2015), 621–664, arXiv: 1501.0731 | DOI | MR
[36] Sakamoto R., Shiraishi J., Arnaudon D., Frappat L., Ragoucy E., “Correspondence between conformal field theory and Calogero–Sutherland model”, Nuclear Phys. B, 704 (2005), 490–509, arXiv: hep-th/0407267 | DOI | MR | Zbl
[37] Sergeev A. N., “Superanalogs of the Calogero operators and Jack polynomials”, J. Nonlinear Math. Phys., 8 (2001), 59–64, arXiv: math.RT/0106222 | DOI | MR | Zbl
[38] Sergeev A. N., Veselov A. P., “Deformed quantum Calogero–Moser problems and Lie superalgebras”, Comm. Math. Phys., 245 (2004), 249–278, arXiv: math-ph/0303025 | DOI | MR | Zbl
[39] Sergeev A. N., Veselov A. P., “Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials”, Adv. Math., 192 (2005), 341–375, arXiv: math-ph/0307036 | DOI | MR | Zbl
[40] Shastry B. S., Sutherland B., “Super Lax pairs and infinite symmetries in the $1/r^2$ system”, Phys. Rev. Lett., 70 (1993), 4029–4033, arXiv: cond-mat/9212029 | DOI | MR | Zbl
[41] Stembridge J. R., “A characterization of supersymmetric polynomials”, J. Algebra, 95 (1985), 439–444 | DOI | MR | Zbl
[42] Sutherland B., “Quantum many-body problem in one dimension: ground state”, J. Math. Phys., 12 (1971), 246–250 | DOI
[43] Sutherland B., “Exact results for a quantum many-body problem in one dimension”, Phys. Rev. A, 4 (1971), 2019–2021 | DOI
[44] Sutherland B., “Exact results for a quantum many-body problem in one-dimension, II”, Phys. Rev. A, 5 (1972), 1372–1376 | DOI
[45] van Diejen J. F., Vinet L. (eds.), Calogero–Moser–Sutherland models, CRM Series in Mathematical Physics, Springer-Verlag, New York, 2000 | DOI | MR | Zbl
[46] Wang W., “Rationality of Virasoro vertex operator algebras”, Int. Math. Res. Not., 1993 (1993), 197–211 | DOI | MR | Zbl