Local Properties of Measures in Quantum Field Theory and Cosmology
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that measure theoretical results concerning the Ashtekar–Lewandowski measure in the space of generalized connections have direct analogues in the context of the Bohr compactification of the line and associated Haar measure. We present also a characterization of the support of the measure associated with the canonical quantization of the free massive scalar field, following closely well known analogous results concerning the Euclidean path integral measure.
Keywords: canonical quantization; scalar field; loop cosmology; support of the measure.
@article{SIGMA_2015_11_a5,
     author = {Jos\'e M. Velhinho},
     title = {Local {Properties} of {Measures} in {Quantum} {Field} {Theory} and {Cosmology}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a5/}
}
TY  - JOUR
AU  - José M. Velhinho
TI  - Local Properties of Measures in Quantum Field Theory and Cosmology
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a5/
LA  - en
ID  - SIGMA_2015_11_a5
ER  - 
%0 Journal Article
%A José M. Velhinho
%T Local Properties of Measures in Quantum Field Theory and Cosmology
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a5/
%G en
%F SIGMA_2015_11_a5
José M. Velhinho. Local Properties of Measures in Quantum Field Theory and Cosmology. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a5/

[1] Ashtekar A., Bojowald M., Lewandowski J., “Mathematical structure of loop quantum cosmology”, Adv. Theor. Math. Phys., 7 (2003), 233–268, arXiv: gr-qc/0304074 | DOI | MR

[2] Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152, arXiv: gr-qc/0404018 | DOI | MR | Zbl

[3] Ashtekar A., Singh P., “Loop quantum cosmology: a status report”, Classical Quantum Gravity, 28 (2011), 213001, 122 pp., arXiv: 1108.0893 | DOI | MR | Zbl

[4] Banerjee K., Calcagni G., Martín-Benito M., “Introduction to loop quantum cosmology”, SIGMA, 8 (2012), 016, 73 pp., arXiv: 1109.6801 | DOI | MR | Zbl

[5] Bojowald M., “Loop quantum cosmology”, Living Rev. Relativity, 11 (2008), 4, 131 pp., arXiv: gr-qc/0601085 | DOI | MR

[6] Bojowald M., “Mathematical structure of loop quantum cosmology: homogeneous models”, SIGMA, 9 (2013), 082, 43 pp., arXiv: 1206.6088 | DOI | MR | Zbl

[7] Castelló Gomar L., Cortez J., Martín-de Blas D., Mena Marugán G. A., Velhinho J. M., “Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes”, J. Cosmol. Astropart. Phys., 2012:11 (2012), 001, 21 pp., arXiv: 1211.5176 | DOI | MR

[8] Colella Ph., Lanford O. E., “Appendix: Sample field behavior for the free Markov random field”, Constructive Quantum Field Theory, International School of Mathematical Physics (Erice, Sicily, 1973), Lecture Notes in Phys., 25, eds. G. Velo, A. Wightman, Springer-Verlag, Berlin–New York, 1973, 44–70 | DOI | MR

[9] Glimm J., Jaffe A., Quantum physics. A functional integral point of view, 2nd ed., Springer-Verlag, New York, 1987 | DOI | MR

[10] Marolf D., Mourão J. M., “On the support of the Ashtekar–Lewandowski measure”, Comm. Math. Phys., 170 (1995), 583–605, arXiv: hep-th/9403112 | DOI | MR | Zbl

[11] Mourão J. M., Thiemann T., Velhinho J. M., “Physical properties of quantum field theory measures”, J. Math. Phys., 40 (1999), 2337–2353, arXiv: hep-th/9711139 | DOI | MR | Zbl

[12] Reed M., Rosen L., “Support properties of the free measure for Boson fields”, Comm. Math. Phys., 36 (1974), 123–132 | DOI | MR | Zbl

[13] Rivasseau V., From perturbative to constructive renormalization, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1991 | MR

[14] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl

[15] Velhinho J. M., “Comments on the kinematical structure of loop quantum cosmology”, Classical Quantum Gravity, 21 (2004), L109–L113, arXiv: gr-qc/0406008 | DOI | MR | Zbl

[16] Velhinho J. M., “On the structure of the space of generalized connections”, Int. J. Geom. Methods Mod. Phys., 1 (2004), 311–334, arXiv: math-ph/0402060 | DOI | MR | Zbl

[17] Velhinho J. M., “The quantum configuration space of loop quantum cosmology”, Classical Quantum Gravity, 24 (2007), 3745–3758, arXiv: 0704.2397 | DOI | MR | Zbl

[18] Yamasaki Y., Measures on infinite-dimensional spaces, Series in Pure Mathematics, 5, World Sci. Publ. Co., Singapore, 1985 | DOI | MR | Zbl