@article{SIGMA_2015_11_a49,
author = {Vincent X. Genest and Luc Vinet and Alexei Zhedanov},
title = {Embeddings of the {Racah} {Algebra} into the {Bannai{\textendash}Ito} {Algebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a49/}
}
TY - JOUR AU - Vincent X. Genest AU - Luc Vinet AU - Alexei Zhedanov TI - Embeddings of the Racah Algebra into the Bannai–Ito Algebra JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a49/ LA - en ID - SIGMA_2015_11_a49 ER -
Vincent X. Genest; Luc Vinet; Alexei Zhedanov. Embeddings of the Racah Algebra into the Bannai–Ito Algebra. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a49/
[1] Gao S., Wang Y., Hou B., “The classification of Leonard triples of Racah type”, Linear Algebra Appl., 439 (2013), 1834–1861 | DOI | MR | Zbl
[2] Genest V. X., Vinet L., Zhedanov A., “Bispectrality of the complementary Bannai–Ito polynomials”, SIGMA, 9 (2013), 018, 20 pp., arXiv: 1211.2461 | DOI | MR | Zbl
[3] Genest V. X., Vinet L., Zhedanov A., “The Bannai–Ito algebra and a superintegrable system with reflections on the two-sphere”, J. Phys. A: Math. Theor., 47 (2014), 205202, 13 pp., arXiv: 1401.1525 | DOI | MR | Zbl
[4] Genest V. X., Vinet L., Zhedanov A., “The Bannai–Ito polynomials as Racah coefficients of the $sl_{-1}(2)$ algebra”, Proc. Amer. Math. Soc., 142 (2014), 1545–1560, arXiv: 1205.4215 | DOI | MR | Zbl
[5] Genest V. X., Vinet L., Zhedanov A., “Superintegrability in two dimensions and the Racah–Wilson algebra”, Lett. Math. Phys., 104 (2014), 931–952, arXiv: 1307.5539 | DOI | MR | Zbl
[6] Genest V. X., Vinet L., Zhedanov A., “The equitable Racah algebra from three $\mathfrak{su}(1,1)$ algebras”, J. Phys. A: Math. Theor., 47 (2014), 025203, 12 pp., arXiv: 1309.3540 | DOI | MR | Zbl
[7] Genest V. X., Vinet L., Zhedanov A., “A Laplace–Dunkl equation on $S^2$ and the Bannai–Ito algebra”, Comm. Math. Phys., 336 (2015), 243–259, arXiv: 1312.6604 | DOI | MR | Zbl
[8] Granovskiĭ Ya. A., Zhedanov A. S., “Nature of the symmetry group of the $6j$-symbol”, Soviet Phys. JETP, 94 (1988), 1982–1985 | MR
[9] Kalnins E. G., Miller W. (Jr.), Pogosyan G. S., “Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions”, J. Math. Phys., 37 (1996), 6439–6467 | DOI | MR | Zbl
[10] Kalnins E. G., Miller W. (Jr.), Pogosyan G. S., “Superintegrability on the two-dimensional hyperboloid”, J. Math. Phys., 38 (1997), 5416–5433 | DOI | MR | Zbl
[11] Kalnins E. G., Miller W. (Jr.), Post S., “Wilson polynomials and the generic superintegrable system on the 2-sphere”, J. Phys. A: Math. Theor., 40 (2007), 11525–11538 | DOI | MR | Zbl
[12] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI | MR | Zbl
[13] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[14] Lesniewski A., “A remark on the Casimir elements of Lie superalgebras and quantized Lie superalgebras”, J. Math. Phys., 36 (1995), 1457–1461 | DOI | MR | Zbl
[15] Lévy-Leblond J. M., Lévy-Nahas M., “Symmetrical coupling of three angular momenta”, J. Math. Phys., 6 (1965), 1372–1380 | DOI | MR | Zbl
[16] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[17] Terwilliger P., “The universal Askey–Wilson algebra and the equitable presentation of $U_q(\mathfrak{sl}_2)$”, SIGMA, 7 (2011), 099, 26 pp., arXiv: 1107.3544 | DOI | MR | Zbl
[18] Tsujimoto S., Vinet L., Zhedanov A., “From $sl_{q}(2)$ to a parabosonic Hopf algebra”, SIGMA, 7 (2011), 093, 13 pp., arXiv: 1108.1603 | DOI | MR | Zbl
[19] Tsujimoto S., Vinet L., Zhedanov A., “Dunkl shift operators and Bannai–Ito polynomials”, Adv. Math., 229 (2012), 2123–2158, arXiv: 1106.3512 | DOI | MR | Zbl
[20] Vilenkin N. Ja., Klimyk A. U., Representation of Lie groups and special functions, v. 1, Mathematics and its Applications (Soviet Series), 72, Simplest Lie groups, special functions and integral transforms, Kluwer Academic Publishers Group, Dordrecht, 1991 | DOI | MR | Zbl