@article{SIGMA_2015_11_a48,
author = {Kyungyong Lee and Li Li and Matthew R. Mills},
title = {A {Combinatorial} {Formula} for {Certain} {Elements} of {Upper} {Cluster} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a48/}
}
TY - JOUR AU - Kyungyong Lee AU - Li Li AU - Matthew R. Mills TI - A Combinatorial Formula for Certain Elements of Upper Cluster Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a48/ LA - en ID - SIGMA_2015_11_a48 ER -
Kyungyong Lee; Li Li; Matthew R. Mills. A Combinatorial Formula for Certain Elements of Upper Cluster Algebras. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a48/
[1] Bayleran D. E., Finnigan D. J., Haj Ali A., Lee K., Locricchio C. M., Mills M. R., Stiefel D. P. P., Tran T. M., Urbaniuk R., A new combinatorial formula for cluster monomials of equioriented type $A$ quivers, Preprint, , 2014 http://math.wayne.edu/k̃lee/Cluster_A_public.pdf
[2] Beineke A., Brüstle T., Hille L., “Cluster-cylic quivers with three vertices and the Markov equation (with an appendix by Otto Kerner)”, Algebr. Represent. Theory, 14 (2011), 97–112, arXiv: math.RA/0612213 | DOI | MR | Zbl
[3] Benito A., Muller G., Rajchgot J., Smith K., Singularities of locally acyclic cluster algebras, arXiv: 1404.4399 | MR
[4] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III: Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl
[5] Fomin S., Zelevinsky A., “Cluster algebras. I: Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[6] Grabowski J., Graded cluster algebras, arXiv: 1309.6170
[7] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR
[8] Gross M., Hacking P., Keel S., Kontsevich M., Canonical bases for cluster algebras, arXiv: 1411.1394
[9] Lee K., Li L., Zelevinsky A., “Greedy elements in rank 2 cluster algebras”, Selecta Math. (N.S.), 20 (2014), 57–82, arXiv: 1208.2391 | DOI | MR | Zbl
[10] Lee K., Schiffler R., “Positivity of cluster algebras”, Ann. of Math., 182 (2015), 73–125, arXiv: 1306.2415 | DOI | Zbl
[11] Matherne J. P., Muller G., “Computing upper cluster algebras”, Int. Math. Res. Not., 2015 (2015), 3121–3149, arXiv: 1307.0579 | DOI | Zbl
[12] Muller G., “${\mathcal A}={\mathcal U}$ for locally acyclic cluster algebras”, SIGMA, 10 (2014), 094, 8 pp., arXiv: 1308.1141 | DOI | MR | Zbl
[13] Plamondon P. G., “Generic bases for cluster algebras from the cluster category”, Int. Math. Res. Not., 2013 (2013), 2368–2420, arXiv: 1308.1141 | DOI | MR | Zbl
[14] Plamondon P. G., Private communication, 2014
[15] Seven A. I., “Maximal green sequences of skew-symmetrizable $3\times3$ matrices”, Linear Algebra Appl., 440 (2014), 125–130, arXiv: 1207.6265 | DOI | MR | Zbl
[16] Speyer D., An infinitely generated upper cluster algebra, arXiv: 1305.6867