@article{SIGMA_2015_11_a47,
author = {Homero G. D{\'\i}az-Mar{\'\i}in},
title = {General {Boundary} {Formulation} for $n${-Dimensional} {Classical} {Abelian} {Theory} with {Corners}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a47/}
}
TY - JOUR AU - Homero G. Díaz-Maríin TI - General Boundary Formulation for $n$-Dimensional Classical Abelian Theory with Corners JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a47/ LA - en ID - SIGMA_2015_11_a47 ER -
Homero G. Díaz-Maríin. General Boundary Formulation for $n$-Dimensional Classical Abelian Theory with Corners. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a47/
[1] Al-Zamil Q. S. A., Montaldi J., “Witten–Hodge theory for manifolds with boundary and equivariant cohomology”, Differential Geom. Appl., 30 (2012), 179–194, arXiv: 1004.2687 | DOI | MR | Zbl
[2] Ancona V., Gaveau B., Okada M., “Harmonic forms and cohomology of singular stratified spaces”, Bull. Sci. Math., 131 (2007), 422–456 | DOI | MR | Zbl
[3] Arbieto A., Matheus C., “A pasting lemma and some applications for conservative systems”, Ergodic Theory Dynam. Systems, 27 (2007), 1399–1417, arXiv: math.DS/0601433 | DOI | MR | Zbl
[4] Atiyah M., “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 1988, 175–186 | MR | Zbl
[5] Cattaneo A. S., Mnev P., Reshetikhin N., “Classical and quantum Lagrangian field theories with boundary”, PoS(CORFU2011), PoS Proc. Sci., 2011, 044, 25 pp., arXiv: 1207.0239
[6] Cattaneo A. S., Mnev P., Reshetikhin N., “Semiclassical quantization of classical field theories”, Mathematical Aspects of Quantum Field Theories, Mathematical Physics Studies, eds. D. Calaque, T. Strobl, Springer, Berlin, 2015, 275–324, arXiv: 1311.2490 | DOI | Zbl
[7] Dacorogna B., Moser J., “On a partial differential equation involving the Jacobian determinant”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 1–26 | MR | Zbl
[8] Driver B. K., Hall B. C., “Yang–Mills theory and the Segal–Bargmann transform”, Comm. Math. Phys., 201 (1999), 249–290, arXiv: hep-th/9808193 | DOI | MR | Zbl
[9] Duff G. F. D., “Differential forms in manifolds with boundary”, Ann. of Math., 56 (1952), 115–127 | DOI | MR | Zbl
[10] Duff G. F. D., Spencer D. C., “Harmonic tensors on Riemannian manifolds with boundary”, Ann. of Math., 56 (1952), 128–156 | DOI | MR | Zbl
[11] Gelca R., “Topological quantum field theory with corners based on the Kauffman bracket”, Comment. Math. Helv., 72 (1997), 216–243, arXiv: q-alg/9603002 | DOI | MR | Zbl
[12] Giachetta G., Mangiattori L., Sardanashvily G., Advanced classical field theory, World Sci. Publ., Singapore, 2009 | DOI | Zbl
[13] Iliev B. Z., Handbook of normal frames and coordinates, Progress in Mathematical Physics, 42, Birkhäuser Verlag, Basel, 2006 | DOI | MR | Zbl
[14] Kijowski J., Tulczyjew W. M., A symplectic framework for field theories, Lecture Notes in Phys., 107, Springer-Verlag, Berlin–New York, 1979 | DOI | MR | Zbl
[15] Landsman N. P., Mathematical topics between classical and quantum mechanics, Springer Monographs in Mathematics, Springer-Verlag, New York, 1998 | DOI | MR
[16] Lauda A. D., Pfeiffer H., “Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras”, Topology Appl., 155 (2008), 623–666, arXiv: math.AT/0510664 | DOI | MR | Zbl
[17] Milnor J. W., Topology from the differentiable viewpoint, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va., 1965 | MR | Zbl
[18] Moser J., “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl
[19] Oeckl R., “General boundary quantum field theory: foundations and probability interpretation”, Adv. Theor. Math. Phys., 12 (2008), 319–352, arXiv: hep-th/0509122 | DOI | MR | Zbl
[20] Oeckl R., “Two-dimensional quantum Yang–Mills theory with corners”, J. Phys. A: Math. Theor., 41 (2008), 135401, 20 pp., arXiv: hep-th/0608218 | DOI | MR | Zbl
[21] Oeckl R., “Affine holomorphic quantization”, J. Geom. Phys., 62 (2012), 1373–1396, arXiv: 1104.5527 | DOI | MR | Zbl
[22] Oeckl R., “Holomorphic quantization of linear field theory in the general boundary formulation”, SIGMA, 8 (2012), 050, 31 pp., arXiv: 1009.5615 | DOI | MR | Zbl
[23] Sati H., “Duality and cohomology in $M$-theory with boundary”, J. Geom. Phys., 62 (2012), 1284–1297, arXiv: 1012.4495 | DOI | MR | Zbl
[24] Schwarz G., Hodge decomposition — a method for solving boundary value problems, Lecture Notes in Math., 1607, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl
[25] Segal G., “The definition of conformal field theory”, Topology, Geometry and Quantum Field Theory, Cambridge University Press, Cambridge, 2004, 421–577 | MR | Zbl
[26] Weinstein A., “Symplectic categories”, Port. Math., 67 (2010), 261–278, arXiv: 0911.4133 | DOI | MR | Zbl
[27] Witten E., “Two-dimensional gauge theories revisited”, J. Geom. Phys., 9 (1992), 303–368, arXiv: hep-th/9204083 | DOI | MR | Zbl
[28] Woodhouse N. M. J., Geometric quantization, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1992 | MR