Higher Order Deformations of Complex Structures
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Deformations of complex structures by finite Beltrami differentials are considered on general Riemann surfaces. Exact formulas to any fixed order are derived for the corresponding deformations of the period matrix, Green's functions, and correlation functions in conformal field theories with vanishing total central charge. The stress tensor is shown to give a simple representation of these deformations valid to all orders. Such deformation formulas naturally enter into the evaluation of superstring amplitudes at two-loop order with Ramond punctures, and at higher loop order, in the supergravity formulation of the RNS superstring.
Keywords: Beltrami differentials; deformations of covariant derivatives; stress tensor; conformal invariance.
@article{SIGMA_2015_11_a46,
     author = {Eric D'Hoker and Duong H. Phong},
     title = {Higher {Order} {Deformations} of {Complex} {Structures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a46/}
}
TY  - JOUR
AU  - Eric D'Hoker
AU  - Duong H. Phong
TI  - Higher Order Deformations of Complex Structures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a46/
LA  - en
ID  - SIGMA_2015_11_a46
ER  - 
%0 Journal Article
%A Eric D'Hoker
%A Duong H. Phong
%T Higher Order Deformations of Complex Structures
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a46/
%G en
%F SIGMA_2015_11_a46
Eric D'Hoker; Duong H. Phong. Higher Order Deformations of Complex Structures. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a46/

[1] Belavin A. A., Knizhnik V. G., “Algebraic geometry and the geometry of quantum strings”, Phys. Lett. B, 168 (1986), 201–206 | DOI | MR | Zbl

[2] D'Hoker E., Phong D. H., The super period matrix with Ramond punctures in the supergravity formulation, arXiv: 1501.02675

[3] D'Hoker E., Phong D. H., “Superholomorphic anomalies and supermoduli space”, Nuclear Phys. B, 292 (1987), 317–329 | DOI | MR

[4] D'Hoker E., Phong D. H., “The geometry of string perturbation theory”, Rev. Modern Phys., 60 (1988), 917–1065 | DOI | MR

[5] D'Hoker E., Phong D. H., “Conformal scalar fields and chiral splitting on super Riemann surfaces”, Comm. Math. Phys., 125 (1989), 469–513 | DOI | MR | Zbl

[6] D'Hoker E., Phong D. H., “Two-loop superstrings. I: Main formulas”, Phys. Lett. B, 529 (2002), 241–255, arXiv: hep-th/0110247 | DOI | MR | Zbl

[7] D'Hoker E., Phong D. H., “Two-loop superstrings. II: The chiral measure on moduli space”, Nuclear Phys. B, 636 (2002), 3–60, arXiv: hep-th/0110283 | DOI | MR | Zbl

[8] D'Hoker E., Phong D. H., “Two-loop superstrings. V: Gauge slice independence of the $N$-point function”, Nuclear Phys. B, 715 (2005), 91–119, arXiv: hep-th/0501196 | DOI | MR | Zbl

[9] D'Hoker E., Phong D. H., “Two-loop superstrings. VI: Nonrenormalization theorems and the 4-point function”, Nuclear Phys. B, 715 (2005), 3–90, arXiv: hep-th/0501197 | DOI | MR | Zbl

[10] D'Hoker E., Phong D. H., “Lectures on two-loop superstrings”, Superstring Theory, v. 1,, Advanced Lectures in Mathematics, eds. K. Liu, S.-T. Yau, C. Zhu, International Press, Boston, 2008, 85–123, arXiv: hep-th/0211111 | MR

[11] Friedan D., “Introduction to Polyakov's string theory”, Recent Advances in Field Theory and Statistical Mechanics (Les Houches, 1982), eds. J. B. Zuber, R. Stora, North-Holland Publishing Co., Amsterdam, 1984, 839–867 | MR

[12] Friedan D., Martinec E., Shenker S., “Conformal invariance, supersymmetry and string theory”, Nuclear Phys. B, 271 (1986), 93–165 | DOI | MR

[13] Lechtenfeld O., “Superconformal ghost correlations on Riemann surfaces”, Phys. Lett. B, 232 (1989), 193–198 | DOI | MR

[14] Royden H. L., “The variation of harmonic differentials and their periods”, Complex Analysis, Birkhäuser, Basel, 1988, 211–223 | DOI | MR

[15] Verlinde E., Verlinde H., “Chiral bosonization, determinants and the string partition function”, Nuclear Phys. B, 288 (1987), 357–396 | DOI | MR

[16] Witten E., Notes on super Riemann surfaces and their moduli, arXiv: 1209.2459

[17] Witten E., Superstring perturbation theory revisited, arXiv: 1209.5461

[18] Witten E., “The super period matrix with Ramond punctures”, J. Geom. Phys., 92 (2015), 210–239, arXiv: 1501.0249 | DOI | MR | Zbl

[19] Yamada A., “Precise variational formulas for abelian differentials”, Kodai Math. J., 3 (1980), 114–143 | DOI | MR | Zbl