@article{SIGMA_2015_11_a46,
author = {Eric D'Hoker and Duong H. Phong},
title = {Higher {Order} {Deformations} of {Complex} {Structures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a46/}
}
Eric D'Hoker; Duong H. Phong. Higher Order Deformations of Complex Structures. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a46/
[1] Belavin A. A., Knizhnik V. G., “Algebraic geometry and the geometry of quantum strings”, Phys. Lett. B, 168 (1986), 201–206 | DOI | MR | Zbl
[2] D'Hoker E., Phong D. H., The super period matrix with Ramond punctures in the supergravity formulation, arXiv: 1501.02675
[3] D'Hoker E., Phong D. H., “Superholomorphic anomalies and supermoduli space”, Nuclear Phys. B, 292 (1987), 317–329 | DOI | MR
[4] D'Hoker E., Phong D. H., “The geometry of string perturbation theory”, Rev. Modern Phys., 60 (1988), 917–1065 | DOI | MR
[5] D'Hoker E., Phong D. H., “Conformal scalar fields and chiral splitting on super Riemann surfaces”, Comm. Math. Phys., 125 (1989), 469–513 | DOI | MR | Zbl
[6] D'Hoker E., Phong D. H., “Two-loop superstrings. I: Main formulas”, Phys. Lett. B, 529 (2002), 241–255, arXiv: hep-th/0110247 | DOI | MR | Zbl
[7] D'Hoker E., Phong D. H., “Two-loop superstrings. II: The chiral measure on moduli space”, Nuclear Phys. B, 636 (2002), 3–60, arXiv: hep-th/0110283 | DOI | MR | Zbl
[8] D'Hoker E., Phong D. H., “Two-loop superstrings. V: Gauge slice independence of the $N$-point function”, Nuclear Phys. B, 715 (2005), 91–119, arXiv: hep-th/0501196 | DOI | MR | Zbl
[9] D'Hoker E., Phong D. H., “Two-loop superstrings. VI: Nonrenormalization theorems and the 4-point function”, Nuclear Phys. B, 715 (2005), 3–90, arXiv: hep-th/0501197 | DOI | MR | Zbl
[10] D'Hoker E., Phong D. H., “Lectures on two-loop superstrings”, Superstring Theory, v. 1,, Advanced Lectures in Mathematics, eds. K. Liu, S.-T. Yau, C. Zhu, International Press, Boston, 2008, 85–123, arXiv: hep-th/0211111 | MR
[11] Friedan D., “Introduction to Polyakov's string theory”, Recent Advances in Field Theory and Statistical Mechanics (Les Houches, 1982), eds. J. B. Zuber, R. Stora, North-Holland Publishing Co., Amsterdam, 1984, 839–867 | MR
[12] Friedan D., Martinec E., Shenker S., “Conformal invariance, supersymmetry and string theory”, Nuclear Phys. B, 271 (1986), 93–165 | DOI | MR
[13] Lechtenfeld O., “Superconformal ghost correlations on Riemann surfaces”, Phys. Lett. B, 232 (1989), 193–198 | DOI | MR
[14] Royden H. L., “The variation of harmonic differentials and their periods”, Complex Analysis, Birkhäuser, Basel, 1988, 211–223 | DOI | MR
[15] Verlinde E., Verlinde H., “Chiral bosonization, determinants and the string partition function”, Nuclear Phys. B, 288 (1987), 357–396 | DOI | MR
[16] Witten E., Notes on super Riemann surfaces and their moduli, arXiv: 1209.2459
[17] Witten E., Superstring perturbation theory revisited, arXiv: 1209.5461
[18] Witten E., “The super period matrix with Ramond punctures”, J. Geom. Phys., 92 (2015), 210–239, arXiv: 1501.0249 | DOI | MR | Zbl
[19] Yamada A., “Precise variational formulas for abelian differentials”, Kodai Math. J., 3 (1980), 114–143 | DOI | MR | Zbl