@article{SIGMA_2015_11_a45,
author = {S\'ebastien Bertrand and Alfred M. Grundland and Alexander J. Hariton},
title = {On the {Integrability} of {Supersymmetric} {Versions} of the {Structural} {Equations} for {Conformally} {Parametrized} {Surfaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a45/}
}
TY - JOUR AU - Sébastien Bertrand AU - Alfred M. Grundland AU - Alexander J. Hariton TI - On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a45/ LA - en ID - SIGMA_2015_11_a45 ER -
%0 Journal Article %A Sébastien Bertrand %A Alfred M. Grundland %A Alexander J. Hariton %T On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a45/ %G en %F SIGMA_2015_11_a45
Sébastien Bertrand; Alfred M. Grundland; Alexander J. Hariton. On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a45/
[1] Aratyn H., Gomes J. F., Ymai L. H., Zimerman A. H., “A class of soliton solutions for the $N=2$ super mKdV/sinh-Gordon hierarchy”, J. Phys. A: Math. Theor., 41 (2008), 312001, 7 pp., arXiv: 0712.0626 | DOI | MR | Zbl
[2] Ayari M. A., Hussin V., Winternitz P., “Group invariant solutions for the $N=2$ super Korteweg–de Vries equation”, J. Math. Phys., 40 (1999), 1951–1965 | DOI | MR | Zbl
[3] Bandos I. A., Doubly supersymmetric geometric approach for heterotic string: from generalized action principle to exactly solvable nonlinear equations, arXiv: hep-th/9510213
[4] Bandos I. A., Pasti P., Sorokin D., Tonin M., Volkov D. V., “Superstrings and supermembranes in the doubly supersymmetric geometrical approach”, Nuclear Phys. B, 446 (1995), 79–118, arXiv: hep-th/9501113 | DOI | MR | Zbl
[5] Bandos I. A., Sorokin D., Volkov D. V., “New supersymmetric generalization of the Liouville equation”, Phys. Lett. B, 372 (1996), 77–82, arXiv: hep-th/9510220 | DOI | MR | Zbl
[6] Berezin F. A., The method of second quantization, Pure and Applied Physics, 24, Academic Press, New York–London, 1966 | MR | Zbl
[7] Berezin F. A., Introduction to superanalysis, Mathematical Physics and Applied Mathematics, 9, D. Reidel Publishing Co., Dordrecht, 1987 | DOI | MR | Zbl
[8] Bergner Y., Jackiw R., “Integrable supersymmetric fluid mechanics from superstrings”, Phys. Lett. A, 284 (2001), 146–151, arXiv: physics/0103092 | DOI | MR | Zbl
[9] Bertrand S., Grundland A. M., Hariton A. J., “Supersymmetric versions of the equations of conformally parametrized surfaces”, J. Phys. A: Math. Theor., 48 (2015), 175208, 37 pp., arXiv: 1504.08260 | DOI | MR
[10] Binétruy P., Supersymmetry: theory, experiment, and cosmology, Oxford Graduate Texts, Oxford University Press, Oxford, 2006 | MR | Zbl
[11] Chaichian M., Kulish P., “On the method of the inverse scattering problem and Bäcklund transformations for supersymmetric equations”, Phys. Lett. B, 78 (1978), 413–416 | DOI | MR
[12] Cieśliński J., “Lie symmetries as a tool to isolate integrable geometries”, Nonlinear Evolution Equations and Dynamical Systems (Baia Verde, 1991), World Sci. Publ., River Edge, NJ, 1992, 260–268 | MR | Zbl
[13] Cieśliński J., Goldstein P., Sym A., “On integrability of the inhomogeneous Heisenberg ferromagnet model: examination of a new test”, J. Phys. A: Math. Gen., 27 (1994), 1645–1664 | DOI | MR | Zbl
[14] Coleman S., “Quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev. D, 11 (1975), 2088–2097, arXiv: hep-th/0509123 | DOI
[15] Cornwell J. F., Group theory in physics, v. III, Techniques of Physics, 10, Supersymmetries and infinite-dimensional algebras, Academic Press, Inc., London, 1989 | MR | Zbl
[16] Das A., Popowicz Z., “Supersymmetric polytropic gas dynamics”, Phys. Lett. A, 296 (2002), 15–26, arXiv: hep-th/0109223 | DOI | MR | Zbl
[17] de Crombrugghe M., Rittenberg V., “Supersymmetric quantum mechanics”, Ann. Physics, 151 (1983), 99–126 | DOI | MR
[18] DeWitt B., Supermanifolds, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984 | MR | Zbl
[19] Dine M., Supersymmetry and string theory. Beyond the standard model, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[20] Fatyga B. W., Kostelecký V. A., Truax D. R., “Grassmann-valued fluid dynamics”, J. Math. Phys., 30 (1989), 1464–1472 | DOI | MR | Zbl
[21] Fokas A. S., Gel'fand I. M., “Surfaces on Lie groups, on Lie algebras, and their integrability”, Comm. Math. Phys., 177 (1996), 203–220 | DOI | MR | Zbl
[22] Fokas A. S., Gel'fand I. M., Finkel F., Liu Q. M., “A formula for constructing infinitely many surfaces on Lie algebras and integrable equations”, Selecta Math. (N.S.), 6 (2000), 347–375 | DOI | MR | Zbl
[23] Freed D. S., Five lectures on supersymmetry, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[24] Gomes J. F., Ymai L. H., Zimerman A. H., “Permutability of Bäcklund transformations for $N=2$ supersymmetric sine-Gordon”, J. Math. Phys., 51 (2010), 033501, 21 pp., arXiv: 0908.3651 | DOI | MR | Zbl
[25] Grammaticos B., Ramani A., Carstea A. S., “Bilinearization and soliton solutions of the $N=1$ supersymmetric sine-Gordon equation”, J. Phys. A: Math. Gen., 34 (2001), 4881–4886 | DOI | MR | Zbl
[26] Grundland A. M., Hariton A. J., “Supersymmetric formulation of polytropic gas dynamics and its invariant solutions”, J. Math. Phys., 52 (2011), 043501, 21 pp., arXiv: 1102.1181 | DOI | MR
[27] Grundland A. M., Hariton A. J., Šnobl L., “Invariant solutions of the supersymmetric sine-Gordon equation”, J. Phys. A: Math. Theor., 42 (2009), 335203, 23 pp., arXiv: 0812.3862 | DOI | MR | Zbl
[28] Grundland A. M., Post S., Riglioni D., “Soliton surfaces and generalized symmetries of integrable systems”, J. Phys. A: Math. Theor., 47 (2014), 015201, 14 pp., arXiv: 1302.6887 | DOI | MR | Zbl
[29] Hariton A. J., “Supersymmetric extension of the scalar Born–Infeld equation”, J. Phys. A: Math. Gen., 39 (2006), 7105–7114 | DOI | MR | Zbl
[30] Henkel M., Unterberger J., “Supersymmetric extensions of Schrödinger-invariance”, Nuclear Phys. B, 746 (2006), 155–201, arXiv: math-ph/0512024 | DOI | MR | Zbl
[31] Jackiw R., Lectures on fluid dynamics. A particle theorist's view of supersymmetric, non-abelian, noncommutative fluid mechanics and $d$-branes, CRM Series in Mathematical Physics, Springer-Verlag, New York, 2002 | DOI | MR
[32] Kac V. G., “Classification of supersymmetries”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. I, Higher Ed. Press, Beijing, 319–344, arXiv: math-ph/0302016 | MR | Zbl
[33] Labelle P., Mathieu P., “A new $N=2$ supersymmetric Korteweg–de Vries equation”, J. Math. Phys., 32 (1991), 923–927 | DOI | MR | Zbl
[34] Levi D., Sym A., Tu G., A working algorithm to isolate integrable surfaces in $E^3$, Preprint DF-INFN, No 761, 1990 | MR
[35] Liu Q. P., Mañas M., “Pfaffian solutions for the Manin–Radul–Mathieu SUSY KdV and SUSY sine-Gordon equations”, Phys. Lett. B, 436 (1998), 306–310, arXiv: solv-int/9806005 | DOI | MR
[36] Manin Yu. I., Radul A. O., “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Comm. Math. Phys., 98 (1985), 65–77 | DOI | MR | Zbl
[37] Mathieu P., “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29 (1988), 2499–2506 | DOI | MR | Zbl
[38] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[39] Rogers A., “A global theory of supermanifolds”, J. Math. Phys., 21 (1980), 1352–1365 | DOI | MR | Zbl
[40] Rogers A., “Super Lie groups: global topology and local structure”, J. Math. Phys., 22 (1981), 939–945 | DOI | MR | Zbl
[41] Siddiq M., Hassan M., “On the linearization of the super sine-Gordon equation”, Europhys. Lett., 70 (2005), 149–154, arXiv: hep-th/0605095 | DOI | MR
[42] Siddiq M., Hassan M., Saleem U., “On Darboux transformation of the supersymmetric sine-Gordon equation”, J. Phys. A: Math. Gen., 39 (2006), 7313–7318, arXiv: hep-th/0605094 | DOI | MR | Zbl
[43] Sorokin D., “Superbranes and superembeddings”, Phys. Rep., 329 (2000), 1–101, arXiv: hep-th/9906142 | DOI | MR
[44] Sym A., “Soliton surfaces”, Lett. Nuovo Cimento, 33 (1982), 394–400 | DOI | MR
[45] Tafel J., “Surfaces in $\mathbb{R}^3$ with prescribed curvature”, J. Geom. Phys., 17 (1995), 381–390 | DOI | MR | Zbl
[46] Terning J., Modern supersymmetry. Dynamics and duality, International Series of Monographs on Physics, 132, The Clarendon Press, Oxford University Press, Oxford, 2006 | MR
[47] Tian K., Liu Q. P., “A supersymmetric Sawada–Kotera equation”, Phys. Lett. A, 373 (2009), 1807–1810, arXiv: 0802.4011 | DOI | MR | Zbl
[48] Varadarajan V. S., Reflections on quanta, symmetries, and supersymmetries, Springer, New York, 2011 | DOI | MR | Zbl
[49] Weinberg S., The quantum theory of fields, v. III, Supersymmetry, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[50] Winternitz P., “Lie groups and solutions of nonlinear partial differential equations”, Integrable Systems, Quantum Groups, and Quantum Field Theories (Salamanca, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 409, Kluwer Acad. Publ., Dordrecht, 1993, 429–495 | DOI | MR | Zbl
[51] Witten E., “Non-abelian bosonization in two dimensions”, Comm. Math. Phys., 92 (1984), 455–472 | DOI | MR | Zbl