Non-Integrability of Some Higher-Order Painlevé Equations in the Sense of Liouville
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the equation $$ w^{(4)} = 5 w'' (w^2 - w') + 5 w (w')^2 - w^5 + (\lambda z + \alpha)w + \gamma, $$ which is one of the higher-order Painlevé equations (i.e., equations in the polynomial class having the Painlevé property). Like the classical Painlevé equations, this equation admits a Hamiltonian formulation, Bäcklund transformations and families of rational and special functions. We prove that this equation considered as a Hamiltonian system with parameters $\gamma/\lambda = 3 k$, $\gamma/\lambda = 3 k - 1$, $k \in \mathbb{Z}$, is not integrable in Liouville sense by means of rational first integrals. To do that we use the Ziglin–Morales-Ruiz–Ramis approach. Then we study the integrability of the second and third members of the $\mathrm{P}_{\mathrm{II}}$-hierarchy. Again as in the previous case it turns out that the normal variational equations are particular cases of the generalized confluent hypergeometric equations whose differential Galois groups are non-commutative and hence, they are obstructions to integrability.
Keywords: Painlevé type equations; Hamiltonian systems; differential Galois groups; generalized confluent hypergeometric equations.
@article{SIGMA_2015_11_a44,
     author = {Ognyan Christov and Georgi Georgiev},
     title = {Non-Integrability of {Some} {Higher-Order} {Painlev\'e} {Equations} {in~the~Sense} {of~Liouville}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a44/}
}
TY  - JOUR
AU  - Ognyan Christov
AU  - Georgi Georgiev
TI  - Non-Integrability of Some Higher-Order Painlevé Equations in the Sense of Liouville
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a44/
LA  - en
ID  - SIGMA_2015_11_a44
ER  - 
%0 Journal Article
%A Ognyan Christov
%A Georgi Georgiev
%T Non-Integrability of Some Higher-Order Painlevé Equations in the Sense of Liouville
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a44/
%G en
%F SIGMA_2015_11_a44
Ognyan Christov; Georgi Georgiev. Non-Integrability of Some Higher-Order Painlevé Equations in the Sense of Liouville. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a44/

[1] Balser W., Jurkat W. B., Lutz D. A., “Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations”, J. Math. Anal. Appl., 71 (1979), 48–94 | DOI | MR | Zbl

[2] Beukers F., Brownawell W. D., Heckman G., “Siegel normality”, Ann. of Math., 127 (1988), 279–308 | DOI | MR | Zbl

[3] Cosgrove C. M., “Higher-order Painlevé equations in the polynomial class. I: Bureau symbol $\mathrm{P2}$”, Stud. Appl. Math., 104 (2000), 1–65 | DOI | MR | Zbl

[4] Cruz Morales J. A., van der Put M., “Stokes matrices for the quantum differential equations of some Fano varieties”, Eur. J. Math., 1 (2015), 138–153, arXiv: 1211.5266 | DOI | Zbl

[5] Duval A., Mitschi C., “Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées”, Pacific J. Math., 138 (1989), 25–56 | DOI | MR | Zbl

[6] Golubev V. V., Lectures on analytic theory of differential equations, Gos. Izdat., M., 1950 (in Russian) | MR

[7] Gromak V. I., “On fourth-order nonlinear differential equations with the Painlevé property”, Differ. Equ., 42 (2006), 1076–1085 | DOI | MR | Zbl

[8] Guest M. A., From quantum cohomology to integrable systems, Oxford Graduate Texts in Mathematics, 15, Oxford University Press, Oxford, 2008 | MR | Zbl

[9] Hone A. N. W., “Non-autonomous Hénon–Heiles systems”, Phys. D, 118 (1998), 1–16, arXiv: solv-int/9703005 | DOI | MR | Zbl

[10] Horozov E., Stoyanova T., “Non-integrability of some Painlevé VI-equations and dilogarithms”, Regul. Chaotic Dyn., 12 (2007), 622–629 | DOI | MR | Zbl

[11] Katz N. M., “On the calculation of some differential Galois groups”, Invent. Math., 87 (1987), 13–61 | DOI | MR | Zbl

[12] Kudryashov N. A., “Transcendents defined by nonlinear fourth-order ordinary differential equations”, J. Phys. A: Math. Gen., 32 (1999), 999–1013 | DOI | MR | Zbl

[13] Luke Y. L., The special functions and their approximations, v. I, Mathematics in Science and Engineering, 53, Academic Press, New York–London, 1969 | Zbl

[14] Mazzocco M., Mo M. Y., “The {H}amiltonian structure of the second Painlevé hierarchy”, Nonlinearity, 20 (2007), 2845–2882, arXiv: nlin.SI/0610066 | DOI | MR | Zbl

[15] Meijer C., “On the $G$-functions. I–VIII”, Indag. Math., 8 (1946), 124–134; 213–225; 312–324; 391–400; 468–475 ; 595–602 ; 661–670 ; 713–723 | Zbl

[16] Mitschi C., “Differential Galois groups and $G$-functions”, Differential Equations and Computer Algebra, Comput. Math. Appl., Academic Press, London, 1991, 149–180 | MR

[17] Mitschi C., “Differential Galois groups of confluent generalized hypergeometric equations: an approach using Stokes multipliers”, Pacific J. Math., 176 (1996), 365–405 | DOI | MR | Zbl

[18] Morales-Ruiz J., Differential Galois theory and non-integrability of Hamiltonian systems, Birkhäuser, Basel, 1989

[19] Morales-Ruiz J., “Kovalevskaya, Liapounov, Painlevé, Ziglin and the differential Galois theory”, Regul. Chaotic Dyn., 5 (2000), 251–272 | DOI | MR | Zbl

[20] Morales-Ruiz J., “A remark about Painlevé transcendents”, Séminaires Congrès, 14 (2006), 229–235 | MR | Zbl

[21] Okamoto K., “Studies on the Painlevé equations. III: Second and fourth Painlevé equations, $P_{{\rm II}}$ and $P_{{\rm IV}}$”, Math. Ann., 275 (1986), 221–255 | DOI | MR | Zbl

[22] Ramis J.-P., Filtration Gevrey sur le groupe de Picard Vessiot d'une équation differentielle irrégulière, Informes de Mathematica Serie, A-045/85, 1985

[23] Ramis J.-P., Martinet J., “Théorie de Galois différentielle et resommation”, Computer Algebra and Differential Equations, Comput. Math. Appl., Academic Press, London, 1990, 117–214 | MR

[24] Sakka A. H., “Bäcklund transformations for first and second Painlevé hierarchies”, SIGMA, 5 (2009), 024, 11 pp., arXiv: 0903.0342 | DOI | MR | Zbl

[25] Sakka A. H., “On special solutions of second and fourth Painlevé hierarchies”, Phys. Lett. A, 373 (2009), 611–615 | DOI | MR | Zbl

[26] Schlesinger L., Handbuch der Theorie der linearen Differentialgleichungen, B. G. Teubner, Leipzig, 1895 | Zbl

[27] Sibuya Y., Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs, 82, Amer. Math. Soc., Providence, RI, 1990 | MR

[28] Stoyanova T., “Non-integrability of the fourth Painlevé equation in the Liouville–Arnold sense”, Nonlinearity, 27 (2014), 1029–1044 | DOI | MR | Zbl

[29] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl

[30] Wasow W., Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, 14, Interscience Publishers John Wiley Sons Inc., New York–London–Sydney, 1965 | MR

[31] Żoła̧dek H., The monodromy group, Monografie Matematyczne, 67, Birkhäuser Verlag, Basel, 2006 | MR

[32] Żoła̧dek H., Filipuk G., “Painlevé equations, elliptic integrals and elementary functions”, J. Differential Equations, 258 (2015), 1303–1355 | DOI | MR