Structure Relations and Darboux Contractions for 2D 2nd Order Superintegrable Systems
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two-dimensional quadratic algebras are generalizations of Lie algebras that include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by Inönu–Wigner type Lie algebra contractions. These geometric contractions have important physical and geometric meanings, such as obtaining classical phenomena as limits of quantum phenomena as ${\hbar}\to 0$ and nonrelativistic phenomena from special relativistic as $c\to \infty$, and the derivation of the Askey scheme for obtaining all hypergeometric orthogonal polynomials as limits of Racah/Wilson polynomials. In this paper we show how to simplify the structure relations for abstract nondegenerate and degenerate quadratic algebras and their contractions. In earlier papers we have classified contractions of 2nd order superintegrable systems on constant curvature spaces and have shown that all results are derivable from free quadratic algebras contained in the enveloping algebras of the Lie algebras $e(2,{\mathbb C})$ in flat space and $o(3,{\mathbb C})$ on nonzero constant curvature spaces. The quadratic algebra contractions are induced by generalizations of Inönü–Wigner contractions of these Lie algebras. As a special case we obtained the Askey scheme for hypergeometric orthogonal polynomials. After constant curvature spaces, the 4 Darboux spaces are the 2D manifolds admitting the most 2nd order Killing tensors. Here we complete this theoretical development for 2D superintegrable systems by showing that the Darboux superintegrable systems are also characterized by free quadratic algebras contained in the symmetry algebras of these spaces and that their contractions are also induced by Inönü–Wigner contractions. We present tables of the contraction results.
Keywords: contractions; quadratic algebras; superintegrable systems; Darboux spaces; Askey scheme.
@article{SIGMA_2015_11_a42,
     author = {Robin Heinonen and Ernest G. Kalnins and Willard Miller Jr. and Eyal Subag},
     title = {Structure {Relations} and {Darboux} {Contractions} for {2D} 2nd {Order} {Superintegrable} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a42/}
}
TY  - JOUR
AU  - Robin Heinonen
AU  - Ernest G. Kalnins
AU  - Willard Miller Jr.
AU  - Eyal Subag
TI  - Structure Relations and Darboux Contractions for 2D 2nd Order Superintegrable Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a42/
LA  - en
ID  - SIGMA_2015_11_a42
ER  - 
%0 Journal Article
%A Robin Heinonen
%A Ernest G. Kalnins
%A Willard Miller Jr.
%A Eyal Subag
%T Structure Relations and Darboux Contractions for 2D 2nd Order Superintegrable Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a42/
%G en
%F SIGMA_2015_11_a42
Robin Heinonen; Ernest G. Kalnins; Willard Miller Jr.; Eyal Subag. Structure Relations and Darboux Contractions for 2D 2nd Order Superintegrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a42/

[1] Bôcher M., Über die Riehenentwickelungen der Potentialtheory, B.G. Teubner, Leipzig, 1894

[2] Bonatsos D., Daskaloyannis C., Kokkotas K., “Deformed oscillator algebras for two-dimensional quantum superintegrable systems”, Phys. Rev. A, 50 (1994), 3700–3709, arXiv: hep-th/9309088 | DOI | MR

[3] Daskaloyannis C., Tanoudis Y., “Quantum superintegrable systems with quadratic integrals on a two dimensional manifold”, J. Math. Phys., 48 (2007), 072108, 22 pp., arXiv: math-ph/0607058 | DOI | MR | Zbl

[4] Doebner H. D., Melsheimer O., “On a class of generalized group contractions”, Nuovo Cimento A, 49 (1967), 306–311 | DOI | MR | Zbl

[5] Eisenhart L. P., Transformations of surfaces, 2nd ed., Chelsea, New York, 1966

[6] Evans N. W., “Super-integrability of the Winternitz system”, Phys. Lett. A, 147 (1990), 483–486 | DOI | MR

[7] Fordy A. P., “Quantum super-integrable systems as exactly solvable models”, SIGMA, 3 (2007), 025, 10 pp., arXiv: math-ph/0702048 | DOI | MR | Zbl

[8] Grabowski J., Marmo G., Perelomov A. M., “Poisson structures: towards a classification”, Modern Phys. Lett. A, 8 (1993), 1719–1733 | DOI | MR | Zbl

[9] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. I: Oscillator”, Theoret. and Math. Phys., 91 (1992), 474–480 | DOI | MR

[10] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. II: The Kepler problem”, Theoret. and Math. Phys., 91 (1992), 604–612 | DOI | MR

[11] Gromov N. A., “From Wigner–Inönü group contraction to contractions of algebraic structures”, Acta Phys. Hung. A, 19 (2004), 209–212, arXiv: hep-th/0210304 | DOI

[12] Huddleston P. L., “Inönü–Wigner contractions of the real four-dimensional Lie algebras”, J. Math. Phys., 19 (1978), 1645–1649 | DOI | MR | Zbl

[13] Inönü E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. USA, 39 (1953), 510–524 | DOI | MR | Zbl

[14] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second-order superintegrable systems in conformally flat spaces. I: Two-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 053509, 28 pp. | DOI | MR | Zbl

[15] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. II: The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp. | DOI | MR | Zbl

[16] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. V: Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI | MR | Zbl

[17] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Nondegenerate 2D complex Euclidean superintegrable systems and algebraic varieties”, J. Phys. A: Math. Theor., 40 (2007), 3399–3411, arXiv: 0708.3044 | DOI | MR | Zbl

[18] Kalnins E. G., Kress J. M., Miller W. (Jr.), Post S., “Structure theory for second order 2{D} superintegrable systems with 1-parameter potentials”, SIGMA, 5 (2009), 008, 24 pp., arXiv: 0901.3081 | DOI | MR | Zbl

[19] Kalnins E. G., Kress J. M., Miller W. (Jr.), Winternitz P., “Superintegrable systems in Darboux spaces”, J. Math. Phys., 44 (2003), 5811–5848, arXiv: math-ph/0307039 | DOI | MR | Zbl

[20] Kalnins E. G., Kress J. M., Winternitz P., “Superintegrability in a two-dimensional space of nonconstant curvature”, J. Math. Phys., 43 (2002), 970–983, arXiv: math-ph/0108015 | DOI | MR | Zbl

[21] Kalnins E. G., Miller W. (Jr.), “Quadratic algebra contractions and second-order superintegrable systems”, Anal. Appl. (Singap.), 12 (2014), 583–612, arXiv: 1401.0830 | DOI | MR | Zbl

[22] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI | MR | Zbl

[23] Koenigs G., “Sur les géodésiques a intégrales quadratiques”: Darboux G., Lecons sur la théorie générale des surfaces et les applications geométriques du calcul infinitesimal, v. 4, Chelsea, New York, 1972, 368–404

[24] Kress J. M., “Equivalence of superintegrable systems in two dimensions”, Phys. Atomic Nuclei, 70 (2007), 560–566 | DOI

[25] Létourneau P., Vinet L., “Superintegrable systems: polynomial algebras and quasi-exactly solvable Hamiltonians”, Ann. Physics, 243 (1995), 144–168 | DOI | MR

[26] Maduemezia A., “On hyper-relativistic quantum systems”, J. Math. Phys., 28 (1987), 79–84 | DOI | MR | Zbl

[27] Miller W. (Jr.), Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, 4, Addison-Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1977 | MR | Zbl

[28] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl

[29] Nesterenko M., Popovych R., “Contractions of low-dimensional Lie algebras”, J. Math. Phys., 47 (2006), 123515, 45 pp., arXiv: math-ph/0608018 | DOI | MR | Zbl

[30] Saletan E. J., “Contraction of Lie groups”, J. Math. Phys., 2 (1961), 1–21 | DOI | MR | Zbl

[31] Talman J. D., Special functions: a group theoretic approach, W. A. Benjamin, Inc., New York–Amsterdam, 1968 (based on lectures by Eugene P. Wigner) | MR | Zbl

[32] Tempesta P., Turbiner A. V., Winternitz P., “Exact solvability of superintegrable systems”, J. Math. Phys., 42 (2001), 4248–4257, arXiv: hep-th/0011209 | DOI | MR | Zbl

[33] Tempesta P., Winternitz P., Harnad J., Miller W., Pogosyan G., Rodriguez M. (eds.), Superintegrability in classical and quantum systems, CRM Proceedings and Lecture Notes, 37, American Mathematical Society, Providence, RI, 2004 | MR | Zbl

[34] Weimar-Woods E., “The three-dimensional real Lie algebras and their contractions”, J. Math. Phys., 32 (1991), 2028–2033 | DOI | MR | Zbl