@article{SIGMA_2015_11_a42,
author = {Robin Heinonen and Ernest G. Kalnins and Willard Miller Jr. and Eyal Subag},
title = {Structure {Relations} and {Darboux} {Contractions} for {2D} 2nd {Order} {Superintegrable} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a42/}
}
TY - JOUR AU - Robin Heinonen AU - Ernest G. Kalnins AU - Willard Miller Jr. AU - Eyal Subag TI - Structure Relations and Darboux Contractions for 2D 2nd Order Superintegrable Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a42/ LA - en ID - SIGMA_2015_11_a42 ER -
%0 Journal Article %A Robin Heinonen %A Ernest G. Kalnins %A Willard Miller Jr. %A Eyal Subag %T Structure Relations and Darboux Contractions for 2D 2nd Order Superintegrable Systems %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a42/ %G en %F SIGMA_2015_11_a42
Robin Heinonen; Ernest G. Kalnins; Willard Miller Jr.; Eyal Subag. Structure Relations and Darboux Contractions for 2D 2nd Order Superintegrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a42/
[1] Bôcher M., Über die Riehenentwickelungen der Potentialtheory, B.G. Teubner, Leipzig, 1894
[2] Bonatsos D., Daskaloyannis C., Kokkotas K., “Deformed oscillator algebras for two-dimensional quantum superintegrable systems”, Phys. Rev. A, 50 (1994), 3700–3709, arXiv: hep-th/9309088 | DOI | MR
[3] Daskaloyannis C., Tanoudis Y., “Quantum superintegrable systems with quadratic integrals on a two dimensional manifold”, J. Math. Phys., 48 (2007), 072108, 22 pp., arXiv: math-ph/0607058 | DOI | MR | Zbl
[4] Doebner H. D., Melsheimer O., “On a class of generalized group contractions”, Nuovo Cimento A, 49 (1967), 306–311 | DOI | MR | Zbl
[5] Eisenhart L. P., Transformations of surfaces, 2nd ed., Chelsea, New York, 1966
[6] Evans N. W., “Super-integrability of the Winternitz system”, Phys. Lett. A, 147 (1990), 483–486 | DOI | MR
[7] Fordy A. P., “Quantum super-integrable systems as exactly solvable models”, SIGMA, 3 (2007), 025, 10 pp., arXiv: math-ph/0702048 | DOI | MR | Zbl
[8] Grabowski J., Marmo G., Perelomov A. M., “Poisson structures: towards a classification”, Modern Phys. Lett. A, 8 (1993), 1719–1733 | DOI | MR | Zbl
[9] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. I: Oscillator”, Theoret. and Math. Phys., 91 (1992), 474–480 | DOI | MR
[10] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. II: The Kepler problem”, Theoret. and Math. Phys., 91 (1992), 604–612 | DOI | MR
[11] Gromov N. A., “From Wigner–Inönü group contraction to contractions of algebraic structures”, Acta Phys. Hung. A, 19 (2004), 209–212, arXiv: hep-th/0210304 | DOI
[12] Huddleston P. L., “Inönü–Wigner contractions of the real four-dimensional Lie algebras”, J. Math. Phys., 19 (1978), 1645–1649 | DOI | MR | Zbl
[13] Inönü E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. USA, 39 (1953), 510–524 | DOI | MR | Zbl
[14] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second-order superintegrable systems in conformally flat spaces. I: Two-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 053509, 28 pp. | DOI | MR | Zbl
[15] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. II: The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp. | DOI | MR | Zbl
[16] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. V: Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI | MR | Zbl
[17] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Nondegenerate 2D complex Euclidean superintegrable systems and algebraic varieties”, J. Phys. A: Math. Theor., 40 (2007), 3399–3411, arXiv: 0708.3044 | DOI | MR | Zbl
[18] Kalnins E. G., Kress J. M., Miller W. (Jr.), Post S., “Structure theory for second order 2{D} superintegrable systems with 1-parameter potentials”, SIGMA, 5 (2009), 008, 24 pp., arXiv: 0901.3081 | DOI | MR | Zbl
[19] Kalnins E. G., Kress J. M., Miller W. (Jr.), Winternitz P., “Superintegrable systems in Darboux spaces”, J. Math. Phys., 44 (2003), 5811–5848, arXiv: math-ph/0307039 | DOI | MR | Zbl
[20] Kalnins E. G., Kress J. M., Winternitz P., “Superintegrability in a two-dimensional space of nonconstant curvature”, J. Math. Phys., 43 (2002), 970–983, arXiv: math-ph/0108015 | DOI | MR | Zbl
[21] Kalnins E. G., Miller W. (Jr.), “Quadratic algebra contractions and second-order superintegrable systems”, Anal. Appl. (Singap.), 12 (2014), 583–612, arXiv: 1401.0830 | DOI | MR | Zbl
[22] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI | MR | Zbl
[23] Koenigs G., “Sur les géodésiques a intégrales quadratiques”: Darboux G., Lecons sur la théorie générale des surfaces et les applications geométriques du calcul infinitesimal, v. 4, Chelsea, New York, 1972, 368–404
[24] Kress J. M., “Equivalence of superintegrable systems in two dimensions”, Phys. Atomic Nuclei, 70 (2007), 560–566 | DOI
[25] Létourneau P., Vinet L., “Superintegrable systems: polynomial algebras and quasi-exactly solvable Hamiltonians”, Ann. Physics, 243 (1995), 144–168 | DOI | MR
[26] Maduemezia A., “On hyper-relativistic quantum systems”, J. Math. Phys., 28 (1987), 79–84 | DOI | MR | Zbl
[27] Miller W. (Jr.), Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, 4, Addison-Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1977 | MR | Zbl
[28] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[29] Nesterenko M., Popovych R., “Contractions of low-dimensional Lie algebras”, J. Math. Phys., 47 (2006), 123515, 45 pp., arXiv: math-ph/0608018 | DOI | MR | Zbl
[30] Saletan E. J., “Contraction of Lie groups”, J. Math. Phys., 2 (1961), 1–21 | DOI | MR | Zbl
[31] Talman J. D., Special functions: a group theoretic approach, W. A. Benjamin, Inc., New York–Amsterdam, 1968 (based on lectures by Eugene P. Wigner) | MR | Zbl
[32] Tempesta P., Turbiner A. V., Winternitz P., “Exact solvability of superintegrable systems”, J. Math. Phys., 42 (2001), 4248–4257, arXiv: hep-th/0011209 | DOI | MR | Zbl
[33] Tempesta P., Winternitz P., Harnad J., Miller W., Pogosyan G., Rodriguez M. (eds.), Superintegrability in classical and quantum systems, CRM Proceedings and Lecture Notes, 37, American Mathematical Society, Providence, RI, 2004 | MR | Zbl
[34] Weimar-Woods E., “The three-dimensional real Lie algebras and their contractions”, J. Math. Phys., 32 (1991), 2028–2033 | DOI | MR | Zbl