Cyclic Homology and Quantum Orbits
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A natural isomorphism between the cyclic object computing the relative cyclic homology of a homogeneous quotient-coalgebra-Galois extension, and the cyclic object computing the cyclic homology of a Galois coalgebra with SAYD coefficients is presented. The isomorphism can be viewed as the cyclic-homological counterpart of the Takeuchi–Galois correspondence between the left coideal subalgebras and the quotient right module coalgebras of a Hopf algebra. A spectral sequence generalizing the classical computation of Hochschild homology of a Hopf algebra to the case of arbitrary homogeneous quotient-coalgebra-Galois extensions is constructed. A Pontryagin type self-duality of the Takeuchi–Galois correspondence is combined with the cyclic duality of Connes in order to obtain dual results on the invariant cyclic homology, with SAYD coefficients, of algebras of invariants in homogeneous quotient-coalgebra-Galois extensions. The relation of this dual result with the Chern character, Frobenius reciprocity, and inertia phenomena in the local Langlands program, the Chen–Ruan–Brylinski–Nistor orbifold cohomology and the Clifford theory is discussed.
Keywords: cyclic homology; homogenous quotient-coalgebra-Galois extensions; Takeuchi–Galois correspondence; Pontryagin duality.
@article{SIGMA_2015_11_a40,
     author = {Tomasz Maszczyk and Serkan S\"utl\"u},
     title = {Cyclic {Homology} and {Quantum} {Orbits}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a40/}
}
TY  - JOUR
AU  - Tomasz Maszczyk
AU  - Serkan Sütlü
TI  - Cyclic Homology and Quantum Orbits
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a40/
LA  - en
ID  - SIGMA_2015_11_a40
ER  - 
%0 Journal Article
%A Tomasz Maszczyk
%A Serkan Sütlü
%T Cyclic Homology and Quantum Orbits
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a40/
%G en
%F SIGMA_2015_11_a40
Tomasz Maszczyk; Serkan Sütlü. Cyclic Homology and Quantum Orbits. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a40/

[1] Aubert A. M., Baum P., Plymen R., Solleveld M., “Geometric structure in smooth dual and local Langlands conjecture”, Jpn. J. Math., 9 (2014), 99–136, arXiv: 1211.0180 | DOI | MR | Zbl

[2] Bergman G. M., Hausknecht A. O., Co-groups and co-rings in categories of associative rings, Mathematical Surveys and Monographs, 45, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR

[3] Bichon J., “Hochschild homology of Hopf algebras and free Yetter–Drinfeld resolutions of the counit”, Compos. Math., 149 (2013), 658–678, arXiv: 1204.0687 | DOI | MR | Zbl

[4] Bonechi F., Ciccoli N., Da̧browski L., Tarlini M., “Bijectivity of the canonical map for the non-commutative instanton bundle”, J. Geom. Phys., 51 (2004), 71–81, arXiv: math.QA/0306114 | DOI | MR | Zbl

[5] Bonechi F., Ciccoli N., Tarlini M., “Noncommutative instantons on the 4-sphere from quantum groups”, Comm. Math. Phys., 226 (2002), 419–432, arXiv: math.QA/0012236 | DOI | MR | Zbl

[6] Brown K. A., Zhang J. J., “Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras”, J. Algebra, 320 (2008), 1814–1850, arXiv: math.RA/0603732 | DOI | MR | Zbl

[7] Brylinski J. L., Nistor V., “Cyclic cohomology of étale groupoids”, $K$-Theory, 8 (1994), 341–365 | DOI | MR | Zbl

[8] Brzeziński T., “Quantum homogeneous spaces as quantum quotient spaces”, J. Math. Phys., 37 (1996), 2388–2399, arXiv: q-alg/9509015 | DOI | MR | Zbl

[9] Brzeziński T., “Quantum homogeneous spaces and coalgebra bundles”, Rep. Math. Phys., 40 (1997), 179–185, arXiv: q-alg/9704015 | DOI | MR | Zbl

[10] Brzeziński T., Hajac P. M., “Coalgebra extensions and algebra coextensions of Galois type”, Comm. Algebra, 27 (1999), 1347–1367, arXiv: q-alg/9708010 | DOI | MR | Zbl

[11] Brzeziński T., Hajac P. M., Galois-type extensions and equivariant projectivity, arXiv: 0901.0141

[12] Cartan H., Eilenberg S., Homological algebra, Princeton University Press, Princeton, NJ, 1956 | MR | Zbl

[13] Chen W., Ruan Y., “A new cohomology theory of orbifold”, Comm. Math. Phys., 248 (2004), 1–31, arXiv: math.AG/0004129 | DOI | MR | Zbl

[14] Collins B., Härtel J., Thom A., “Homology of free quantum groups”, C. R. Math. Acad. Sci. Paris, 347 (2009), 271–276, arXiv: 0903.1686 | DOI | MR | Zbl

[15] Connes A., “Cohomologie cyclique et foncteurs $\mathrm{Ext}^n$”, C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 953–958 | MR | Zbl

[16] Connes A., Moscovici H., “Hopf algebras, cyclic cohomology and the transverse index theorem”, Comm. Math. Phys., 198 (1998), 199–246, arXiv: math.DG/9806109 | DOI | MR | Zbl

[17] Connes A., Moscovici H., “Cyclic cohomology and Hopf algebras”, Lett. Math. Phys., 48 (1999), 97–108, arXiv: math.QA/9904154 | DOI | MR | Zbl

[18] Dijkhuizen M. S., Koornwinder T. H., “Quantum homogeneous spaces, duality and quantum $2$-spheres”, Geom. Dedicata, 52 (1994), 291–315 | DOI | MR | Zbl

[19] Eckmann B., “Cyclic homology of groups and the Bass conjecture”, Comment. Math. Helv., 61 (1986), 193–202 | DOI | MR | Zbl

[20] Feng P., Tsygan B., “Hochschild and cyclic homology of quantum groups”, Comm. Math. Phys., 140 (1991), 481–521 | DOI | MR | Zbl

[21] Getzler E., “Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology”, Quantum Deformations of Algebras and their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conf. Proc., 7, Bar-Ilan University, Ramat Gan, 1993, 65–78 | MR | Zbl

[22] Ginzburg V., Kumar S., Cohomology of quantum groups at roots of unity,, Duke Math. J., 69 (1993), 179–198 | DOI | MR | Zbl

[23] Hadfield T., Krähmer U., “Twisted homology of quantum $\mathrm{SL}(2)$”, $K$-Theory, 34 (2005), 327–360, arXiv: math.QA/0405249 | DOI | MR | Zbl

[24] Hajac P. M., Khalkhali M., Rangipour B., Sommerhäuser Y., “Hopf-cyclic homology and cohomology with coefficients”, C.R. Math. Acad. Sci. Paris, 338 (2004), 667–672, arXiv: math.KT/0306288 | DOI | MR | Zbl

[25] Hajac P. M., Khalkhali M., Rangipour B., Sommerhäuser Y., “Stable anti-Yetter–Drinfeld modules”, C.R. Math. Acad. Sci. Paris, 338 (2004), 587–590, arXiv: math.QA/0405005 | DOI | MR | Zbl

[26] Hochschild G., Kostant B., Rosenberg A., “Differential forms on regular affine algebras”, Trans. Amer. Math. Soc., 102 (1962), 383–408 | DOI | MR | Zbl

[27] Jara P., Ştefan D., “Hopf-cyclic homology and relative cyclic homology of Hopf–Galois extensions”, Proc. London Math. Soc., 93 (2006), 138–174 | DOI | MR | Zbl

[28] Kadison L., “A relative cyclic cohomology theory useful for computations”, C.R. Acad. Sci. Paris Sér. I Math., 308 (1989), 569–573 | MR | Zbl

[29] Kadison L., “Cyclic homology of triangular matrix algebras”, Topology Hawaii (Honolulu, HI, 1990), World Sci. Publ., River Edge, NJ, 1992, 137–148 | MR | Zbl

[30] Kadison L., “Hopf subalgebras and tensor powers of generalized permutation modules”, J. Pure Appl. Algebra, 218 (2014), 367–380, arXiv: 1210.3178 | DOI | MR | Zbl

[31] Khalkhali M., Rangipour B., “A note on cyclic duality and Hopf algebras”, Comm. Algebra, 33 (2005), 763–773, arXiv: math.KT/0310088 | DOI | MR | Zbl

[32] Lu J. H., “Moment maps at the quantum level”, Comm. Math. Phys., 157 (1993), 389–404 | DOI | MR | Zbl

[33] Maszczyk T., Feynman integral, Chern character and duality, in preparation

[34] Pahlings H., Plesken W., “Group actions on Cartesian powers with applications to representation theory”, J. Reine Angew. Math., 380 (1987), 178–195 | DOI | MR | Zbl

[35] Podleś P., “Quantum spheres”, Lett. Math. Phys., 14 (1987), 193–202 | DOI | MR | Zbl

[36] Schafer J. A., “Relative cyclic homology and the Bass conjecture”, Comment. Math. Helv., 67 (1992), 214–225 | DOI | MR | Zbl

[37] Schauenburg P., “Galois correspondences for Hopf bi-Galois extensions”, J. Algebra, 201 (1998), 53–70 | DOI | MR | Zbl

[38] Schneider H. J., “Some remarks on exact sequences of quantum groups”, Comm. Algebra, 21 (1993), 3337–3357 | DOI | MR | Zbl

[39] Takeuchi M., “A correspondence between Hopf ideals and sub-Hopf algebras”, Manuscripta Math., 7 (1972), 251–270 | DOI | MR | Zbl

[40] Van Oystaeyen F., Zhang Y., “Galois-type correspondences for Hopf–Galois extensions”, $K$-Theory, 8 (1994), 257–269 | DOI | MR | Zbl