@article{SIGMA_2015_11_a40,
author = {Tomasz Maszczyk and Serkan S\"utl\"u},
title = {Cyclic {Homology} and {Quantum} {Orbits}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a40/}
}
Tomasz Maszczyk; Serkan Sütlü. Cyclic Homology and Quantum Orbits. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a40/
[1] Aubert A. M., Baum P., Plymen R., Solleveld M., “Geometric structure in smooth dual and local Langlands conjecture”, Jpn. J. Math., 9 (2014), 99–136, arXiv: 1211.0180 | DOI | MR | Zbl
[2] Bergman G. M., Hausknecht A. O., Co-groups and co-rings in categories of associative rings, Mathematical Surveys and Monographs, 45, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR
[3] Bichon J., “Hochschild homology of Hopf algebras and free Yetter–Drinfeld resolutions of the counit”, Compos. Math., 149 (2013), 658–678, arXiv: 1204.0687 | DOI | MR | Zbl
[4] Bonechi F., Ciccoli N., Da̧browski L., Tarlini M., “Bijectivity of the canonical map for the non-commutative instanton bundle”, J. Geom. Phys., 51 (2004), 71–81, arXiv: math.QA/0306114 | DOI | MR | Zbl
[5] Bonechi F., Ciccoli N., Tarlini M., “Noncommutative instantons on the 4-sphere from quantum groups”, Comm. Math. Phys., 226 (2002), 419–432, arXiv: math.QA/0012236 | DOI | MR | Zbl
[6] Brown K. A., Zhang J. J., “Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras”, J. Algebra, 320 (2008), 1814–1850, arXiv: math.RA/0603732 | DOI | MR | Zbl
[7] Brylinski J. L., Nistor V., “Cyclic cohomology of étale groupoids”, $K$-Theory, 8 (1994), 341–365 | DOI | MR | Zbl
[8] Brzeziński T., “Quantum homogeneous spaces as quantum quotient spaces”, J. Math. Phys., 37 (1996), 2388–2399, arXiv: q-alg/9509015 | DOI | MR | Zbl
[9] Brzeziński T., “Quantum homogeneous spaces and coalgebra bundles”, Rep. Math. Phys., 40 (1997), 179–185, arXiv: q-alg/9704015 | DOI | MR | Zbl
[10] Brzeziński T., Hajac P. M., “Coalgebra extensions and algebra coextensions of Galois type”, Comm. Algebra, 27 (1999), 1347–1367, arXiv: q-alg/9708010 | DOI | MR | Zbl
[11] Brzeziński T., Hajac P. M., Galois-type extensions and equivariant projectivity, arXiv: 0901.0141
[12] Cartan H., Eilenberg S., Homological algebra, Princeton University Press, Princeton, NJ, 1956 | MR | Zbl
[13] Chen W., Ruan Y., “A new cohomology theory of orbifold”, Comm. Math. Phys., 248 (2004), 1–31, arXiv: math.AG/0004129 | DOI | MR | Zbl
[14] Collins B., Härtel J., Thom A., “Homology of free quantum groups”, C. R. Math. Acad. Sci. Paris, 347 (2009), 271–276, arXiv: 0903.1686 | DOI | MR | Zbl
[15] Connes A., “Cohomologie cyclique et foncteurs $\mathrm{Ext}^n$”, C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 953–958 | MR | Zbl
[16] Connes A., Moscovici H., “Hopf algebras, cyclic cohomology and the transverse index theorem”, Comm. Math. Phys., 198 (1998), 199–246, arXiv: math.DG/9806109 | DOI | MR | Zbl
[17] Connes A., Moscovici H., “Cyclic cohomology and Hopf algebras”, Lett. Math. Phys., 48 (1999), 97–108, arXiv: math.QA/9904154 | DOI | MR | Zbl
[18] Dijkhuizen M. S., Koornwinder T. H., “Quantum homogeneous spaces, duality and quantum $2$-spheres”, Geom. Dedicata, 52 (1994), 291–315 | DOI | MR | Zbl
[19] Eckmann B., “Cyclic homology of groups and the Bass conjecture”, Comment. Math. Helv., 61 (1986), 193–202 | DOI | MR | Zbl
[20] Feng P., Tsygan B., “Hochschild and cyclic homology of quantum groups”, Comm. Math. Phys., 140 (1991), 481–521 | DOI | MR | Zbl
[21] Getzler E., “Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology”, Quantum Deformations of Algebras and their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conf. Proc., 7, Bar-Ilan University, Ramat Gan, 1993, 65–78 | MR | Zbl
[22] Ginzburg V., Kumar S., Cohomology of quantum groups at roots of unity,, Duke Math. J., 69 (1993), 179–198 | DOI | MR | Zbl
[23] Hadfield T., Krähmer U., “Twisted homology of quantum $\mathrm{SL}(2)$”, $K$-Theory, 34 (2005), 327–360, arXiv: math.QA/0405249 | DOI | MR | Zbl
[24] Hajac P. M., Khalkhali M., Rangipour B., Sommerhäuser Y., “Hopf-cyclic homology and cohomology with coefficients”, C.R. Math. Acad. Sci. Paris, 338 (2004), 667–672, arXiv: math.KT/0306288 | DOI | MR | Zbl
[25] Hajac P. M., Khalkhali M., Rangipour B., Sommerhäuser Y., “Stable anti-Yetter–Drinfeld modules”, C.R. Math. Acad. Sci. Paris, 338 (2004), 587–590, arXiv: math.QA/0405005 | DOI | MR | Zbl
[26] Hochschild G., Kostant B., Rosenberg A., “Differential forms on regular affine algebras”, Trans. Amer. Math. Soc., 102 (1962), 383–408 | DOI | MR | Zbl
[27] Jara P., Ştefan D., “Hopf-cyclic homology and relative cyclic homology of Hopf–Galois extensions”, Proc. London Math. Soc., 93 (2006), 138–174 | DOI | MR | Zbl
[28] Kadison L., “A relative cyclic cohomology theory useful for computations”, C.R. Acad. Sci. Paris Sér. I Math., 308 (1989), 569–573 | MR | Zbl
[29] Kadison L., “Cyclic homology of triangular matrix algebras”, Topology Hawaii (Honolulu, HI, 1990), World Sci. Publ., River Edge, NJ, 1992, 137–148 | MR | Zbl
[30] Kadison L., “Hopf subalgebras and tensor powers of generalized permutation modules”, J. Pure Appl. Algebra, 218 (2014), 367–380, arXiv: 1210.3178 | DOI | MR | Zbl
[31] Khalkhali M., Rangipour B., “A note on cyclic duality and Hopf algebras”, Comm. Algebra, 33 (2005), 763–773, arXiv: math.KT/0310088 | DOI | MR | Zbl
[32] Lu J. H., “Moment maps at the quantum level”, Comm. Math. Phys., 157 (1993), 389–404 | DOI | MR | Zbl
[33] Maszczyk T., Feynman integral, Chern character and duality, in preparation
[34] Pahlings H., Plesken W., “Group actions on Cartesian powers with applications to representation theory”, J. Reine Angew. Math., 380 (1987), 178–195 | DOI | MR | Zbl
[35] Podleś P., “Quantum spheres”, Lett. Math. Phys., 14 (1987), 193–202 | DOI | MR | Zbl
[36] Schafer J. A., “Relative cyclic homology and the Bass conjecture”, Comment. Math. Helv., 67 (1992), 214–225 | DOI | MR | Zbl
[37] Schauenburg P., “Galois correspondences for Hopf bi-Galois extensions”, J. Algebra, 201 (1998), 53–70 | DOI | MR | Zbl
[38] Schneider H. J., “Some remarks on exact sequences of quantum groups”, Comm. Algebra, 21 (1993), 3337–3357 | DOI | MR | Zbl
[39] Takeuchi M., “A correspondence between Hopf ideals and sub-Hopf algebras”, Manuscripta Math., 7 (1972), 251–270 | DOI | MR | Zbl
[40] Van Oystaeyen F., Zhang Y., “Galois-type correspondences for Hopf–Galois extensions”, $K$-Theory, 8 (1994), 257–269 | DOI | MR | Zbl