Bosonizations of $\widehat{\mathfrak{sl}}_2$ and Integrable Hierarchies
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct embeddings of $\widehat{\mathfrak{sl}}_2$ in lattice vertex algebras by composing the Wakimoto realization with the Friedan–Martinec–Shenker bosonization. The Kac–Wakimoto hierarchy then gives rise to two new hierarchies of integrable, non-autonomous, non-linear partial differential equations. A new feature of our construction is that it works for any value of the central element of $\widehat{\mathfrak{sl}}_2$; that is, the level becomes a parameter in the equations.
Keywords: affine Kac–Moody algebra; Casimir element; Friedan–Martinec–Shenker bosonization; lattice vertex algebra; Virasoro algebra; Wakimoto realization.
@article{SIGMA_2015_11_a4,
     author = {Bojko Bakalov and Daniel Fleisher},
     title = {Bosonizations of $\widehat{\mathfrak{sl}}_2$ and {Integrable} {Hierarchies}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a4/}
}
TY  - JOUR
AU  - Bojko Bakalov
AU  - Daniel Fleisher
TI  - Bosonizations of $\widehat{\mathfrak{sl}}_2$ and Integrable Hierarchies
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a4/
LA  - en
ID  - SIGMA_2015_11_a4
ER  - 
%0 Journal Article
%A Bojko Bakalov
%A Daniel Fleisher
%T Bosonizations of $\widehat{\mathfrak{sl}}_2$ and Integrable Hierarchies
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a4/
%G en
%F SIGMA_2015_11_a4
Bojko Bakalov; Daniel Fleisher. Bosonizations of $\widehat{\mathfrak{sl}}_2$ and Integrable Hierarchies. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a4/

[1] Adamović D., “A construction of admissible $A^{(1)}_1$-modules of level $-\frac 43$”, J. Pure Appl. Algebra, 196 (2005), 119–134, arXiv: math.QA/0401023 | DOI | MR | Zbl

[2] Bakalov B., Kac V. G., “Twisted modules over lattice vertex algebras”, Lie Theory and its Applications in Physics V, World Sci. Publ., River Edge, NJ, 2004, 3–26, arXiv: math.QA/0402315 | DOI | MR

[3] Borcherds R. E., “Vertex algebras, Kac–Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR

[4] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. III: Operator approach to the Kadomtsev–Petviashvili equation”, J. Phys. Soc. Japan, 50 (1981), 3806–3812 | DOI | MR | Zbl

[5] Date E., Kashiwara M., Miwa T., “Transformation groups for soliton equations. II: Vertex operators and $\tau $ functions”, Proc. Japan Acad. Ser. A Math. Sci., 57 (1981), 387–392 | DOI | MR | Zbl

[6] Dong C., “Twisted modules for vertex algebras associated with even lattices”, J. Algebra, 165 (1994), 91–112 | DOI | MR | Zbl

[7] Feigin B. L., Frenkel E. V., “Representations of affine Kac–Moody algebras, bosonization and resolutions”, Lett. Math. Phys., 19 (1990), 307–317 | DOI | MR | Zbl

[8] Feigin B. L., Semikhatov A. M., “${\mathcal W}^{(2)}_n$ algebras”, Nuclear Phys. B, 698 (2004), 409–449, arXiv: math.QA/0401164 | DOI | MR | Zbl

[9] Feingold A. J., Frenkel I. B., “Classical affine algebras”, Adv. Math., 56 (1985), 117–172 | DOI | MR | Zbl

[10] Feingold A. J., Frenkel I. B., Ries J. F. X., “Spinor construction of vertex operator algebras, triality, and $E^{(1)}_8$”, Contemporary Mathematics, 121, Amer. Math. Soc., Providence, RI, 1991 | DOI | MR | Zbl

[11] Frenkel E., “Wakimoto modules, opers and the center at the critical level”, Adv. Math., 195 (2005), 297–404, arXiv: math.QA/0210029 | DOI | MR | Zbl

[12] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[13] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl

[14] Frenkel I. B., Kac V. G., “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math., 62 (1980), 23–66 | DOI | MR | Zbl

[15] Friedan D., Martinec E., Shenker S., “Conformal invariance, supersymmetry and string theory”, Nuclear Phys. B, 271 (1986), 93–165 | DOI | MR

[16] Goddard P., Kent A., Olive D., “Virasoro algebras and coset space models”, Phys. Lett. B, 152 (1985), 88–92 | DOI | MR | Zbl

[17] Jing N., Misra K. C., Xu C., “Bosonic realization of toroidal Lie algebras of classical types”, Proc. Amer. Math. Soc., 137 (2009), 3609–3618, arXiv: 0908.0211 | DOI | MR | Zbl

[18] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl

[19] Kac V. G., Vertex algebras for beginners, University Lecture Series, 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[20] Kac V. G., Peterson D. H., “$112$ constructions of the basic representation of the loop group of $E_8$”, Symposium on Anomalies, Geometry, Topology (Chicago, Ill., 1985), World Sci. Publ., Singapore, 1985, 276–298 | MR

[21] Kac V. G., Raina A. K., Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 2, World Sci. Publ. Co., Inc., Teaneck, NJ, 1987 | MR | Zbl

[22] Kac V. G., Wakimoto M., “Exceptional hierarchies of soliton equations”, Theta Functions (Bowdoin, Brunswick, ME, 1987), v. 1, Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 191–237 | DOI | MR

[23] Kashiwara M., Miwa T., “Transformation groups for soliton equations. I. The $\tau $ function of the Kadomtsev–Petviashvili equation”, Proc. Japan Acad. Ser. A Math. Sci., 57 (1981), 342–347 | DOI | MR | Zbl

[24] Lepowsky J., “Calculus of twisted vertex operators”, Proc. Nat. Acad. Sci. USA, 82 (1985), 8295–8299 | DOI | MR | Zbl

[25] Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl

[26] Lepowsky J., Wilson R. L., “Construction of the affine Lie algebra $A_{1}^{(1)}$”, Comm. Math. Phys., 62 (1978), 43–53 | DOI | MR | Zbl

[27] Liszewski K. T., The charged free boson integrable hierarchy, Ph. D. Thesis, North Carolina State University, 2011 http://www.lib.ncsu.edu/resolver/1840.16/7058 | MR

[28] Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Mathematics, 135, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[29] Peterson D. H., Kac V. G., “Infinite flag varieties and conjugacy theorems”, Proc. Nat. Acad. Sci. USA, 80 (1983), 1778–1782 | DOI | MR | Zbl

[30] Wakimoto M., “Fock representations of the affine Lie algebra $A^{(1)}_1$”, Comm. Math. Phys., 104 (1986), 605–609 | DOI | MR | Zbl

[31] Wang W., “${\mathcal W}_{1+\infty}$ algebra, ${\mathcal W}_3$ algebra, and Friedan–Martinec–Shenker bosonization”, Comm. Math. Phys., 195 (1998), 95–111, arXiv: q-alg/9708008 | DOI | MR | Zbl