@article{SIGMA_2015_11_a39,
author = {Patrick Conner and Nicolas Guay},
title = {From {Twisted} {Quantum} {Loop} {Algebras} to {Twisted} {Yangians}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a39/}
}
Patrick Conner; Nicolas Guay. From Twisted Quantum Loop Algebras to Twisted Yangians. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a39/
[1] Arnaudon D., Molev A., Ragoucy E., “On the $R$-matrix realization of Yangians and their representations”, Ann. Henri Poincaré, 7 (2006), 1269–1325, arXiv: math.QA/0511481 | DOI
[2] Bernard D., “Hidden Yangians in $2$D massive current algebras”, Comm. Math. Phys., 137 (1991), 191–208 | DOI
[3] Bernard D., LeClair A., “Quantum group symmetries and nonlocal currents in $2$D QFT”, Comm. Math. Phys., 142 (1991), 99–138 | DOI
[4] Bernard D., Maassarani Z., Mathieu P., “Logarithmic Yangians in WZW models”, Modern Phys. Lett. A, 12 (1997), 535–544, arXiv: hep-th/9612217 | DOI
[5] Brundan J., Kleshchev A., “Parabolic presentations of the Yangian $Y({\mathfrak{gl}}_n)$”, Comm. Math. Phys., 254 (2005), 191–220, arXiv: math.QA/0407011 | DOI
[6] Chari V., Pressley A., “Yangians, integrable quantum systems and Dorey's rule”, Comm. Math. Phys., 181 (1996), 265–302, arXiv: hep-th/9505085 | DOI
[7] Chen H., Guay N., “Twisted affine Lie superalgebra of type $Q$ and quantization of its enveloping superalgebra”, Math. Z., 272 (2012), 317–347 | DOI
[8] Chen H., Guay N., Ma X., “Twisted Yangians, twisted quantum loop algebras and affine Hecke algebras of type $BC$”, Trans. Amer. Math. Soc., 366 (2014), 2517–2574 | DOI
[9] Cherednik I. V., “A new interpretation of Gelfand–Tzetlin bases”, Duke Math. J., 54 (1987), 563–577 | DOI
[10] De La Rosa Gomez A., MacKay N. J., “Twisted Yangian symmetry of the open Hubbard model”, J. Phys. A: Math. Theor., 47 (2014), 305203, 9 pp., arXiv: 1404.2095 | DOI
[11] Delius G. W., MacKay N. J., Short B. J., “Boundary remnant of Yangian symmetry and the structure of rational reflection matrices”, Phys. Lett. B, 522 (2001), 335–344, arXiv: hep-th/0109115 | DOI
[12] Ding J. T., Frenkel I. B., “Isomorphism of two realizations of quantum affine algebra $U_q(\widehat{\mathfrak{gl}(n)})$”, Comm. Math. Phys., 156 (1993), 277–300 | DOI
[13] Drinfeld V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820
[14] Drinfeld V. G., “A new realization of Yangians and of quantum affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216
[15] Gautam S., Toledano Laredo V., Yangians, quantum loop algebras and abelian difference equations, arXiv: 1310.7318
[16] Gautam S., Toledano Laredo V., Meromorphic Kazhdan–Lusztig equivalence for Yangians and quantum loop algebras, arXiv: 1403.5251
[17] Gautam S., Toledano Laredo V., “Yangians and quantum loop algebras”, Selecta Math. (N.S.), 19 (2013), 271–336, arXiv: 1012.3687 | DOI
[18] Guay N., Ma X., “From quantum loop algebras to Yangians”, J. Lond. Math. Soc., 86 (2012), 683–700 | DOI
[19] Guay N., Regelskis V., Twisted Yangians for symmetric pairs of types $B$, $C$, $D$, arXiv: 1407.5247
[20] Haldane F. D. M., Ha Z. N. C., Talstra J. C., Bernard D., Pasquier V., “Yangian symmetry of integrable quantum chains with long-range interactions and a new description of states in conformal field theory”, Phys. Rev. Lett., 69 (1992), 2021–2025 | DOI
[21] Kolb S., “Quantum symmetric Kac–Moody pairs”, Adv. Math., 267 (2014), 395–469, arXiv: 1207.6036 | DOI
[22] MacKay N., Regelskis V., “Achiral boundaries and the twisted Yangian of the D5-brane”, J. High Energy Phys., 2011:8 (2011), 019, 22 pp., arXiv: 1105.4128 | DOI
[23] MacKay N., Regelskis V., “Reflection algebra, Yangian symmetry and bound-states in AdS/CFT”, J. High Energy Phys., 2012:1 (2012), 134, 31 pp., arXiv: 1101.6062 | DOI
[24] MacKay N. J., “Rational $K$-matrices and representations of twisted Yangians”, J. Phys. A: Math. Gen., 35 (2002), 7865–7876, arXiv: math.QA/0205155 | DOI
[25] MacKay N. J., “Introduction to Yangian symmetry in integrable field theory”, Internat. J. Modern Phys. A, 20 (2005), 7189–7217, arXiv: hep-th/0409183 | DOI
[26] Mintchev M., Ragoucy E., Sorba P., Zaugg Ph., “Yangian symmetry in the nonlinear Schrödinger hierarchy”, J. Phys. A: Math. Gen., 32 (1999), 5885–5900, arXiv: hep-th/9905105 | DOI
[27] Molev A., Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143, Amer. Math. Soc., Providence, RI, 2007 | DOI
[28] Molev A., Ragoucy E., “Representations of reflection algebras”, Rev. Math. Phys., 14 (2002), 317–342, arXiv: math.QA/0107213 | DOI
[29] Molev A., Ragoucy E., Sorba P., “Coideal subalgebras in quantum affine algebras”, Rev. Math. Phys., 15 (2003), 789–822, arXiv: math.QA/0208140 | DOI
[30] Nazarov M., “Yangian of the queer Lie superalgebra”, Comm. Math. Phys., 208 (1999), 195–223, arXiv: math.QA/9902146 | DOI
[31] Olshanskii G. I., “Twisted Yangians and infinite-dimensional classical Lie algebras”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 104–119 | DOI
[32] Reshetikhin N. Yu., Takhtadzhyan L. A., Faddeev L. D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225