Mots-clés : permutation tableau.
@article{SIGMA_2015_11_a38,
author = {Jang Soo Kim and Dennis Stanton},
title = {The {Combinatorics} of {Associated} {Laguerre} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a38/}
}
Jang Soo Kim; Dennis Stanton. The Combinatorics of Associated Laguerre Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a38/
[1] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978
[2] Corteel S., Josuat-Vergès M., Personal communication
[3] Corteel S., Kim J. S., “Combinatorics on permutation tableaux of type A and type B”, European J. Combin., 32 (2011), 563–579, arXiv: 1006.3812 | DOI
[4] Corteel S., Nadeau P., “Bijections for permutation tableaux”, European J. Combin., 30 (2009), 295–310 | DOI
[5] Corteel S., Williams L. K., “Tableaux combinatorics for the asymmetric exclusion process and Askey–Wilson polynomials”, Duke Math. J., 159 (2011), 385–415, arXiv: 0910.1858 | DOI
[6] Drake D., “The combinatorics of associated Hermite polynomials”, European J. Combin., 30 (2009), 1005–1021, arXiv: 0709.0987 | DOI
[7] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI
[8] Ismail M. E. H., Rahman M., “The associated Askey–Wilson polynomials”, Trans. Amer. Math. Soc., 328 (1991), 201–237 | DOI
[9] Jones W. B., Thron W. J., Continued fractions, Encyclopedia of Mathematics and its Applications, 11, Addison-Wesley Publishing Co., Reading, Mass., 1980
[10] Nadeau P., “The structure of alternative tableaux”, J. Combin. Theory Ser. A, 118 (2011), 1638–1660 | DOI
[11] Postnikov A., Total positivity, Grassmannians, and networks, arXiv: math.CO/0609764
[12] Simion R., Stanton D., “Specializations of generalized Laguerre polynomials”, SIAM J. Math. Anal., 25 (1994), 712–719, arXiv: math.CA/9307219 | DOI
[13] Simion R., Stanton D., “Octabasic Laguerre polynomials and permutation statistics”, J. Comput. Appl. Math., 68 (1996), 297–329 | DOI
[14] Stanley R. P., Enumerative combinatorics, v. 1, Cambridge Studies in Advanced Mathematics, 49, 2nd ed., Cambridge University Press, Cambridge, 2012
[15] Viennot G., “A combinatorial theory for general orthogonal polynomials with extensions and applications”, Orthogonal Polynomials and Applications (Bar-le-Duc, 1984), Lecture Notes in Math., 1171, Springer, Berlin, 1985, 139–157 | DOI
[16] Viennot X., Alternative tableaux, permutations and partially asymmetric exclusion process http://www.newton.ac.uk/webseminars/pg+ws/2008/csm/csmw04/0423/viennot/
[17] Wimp J., “Explicit formulas for the associated Jacobi polynomials and some applications”, Canad. J. Math., 39 (1987), 983–1000 | DOI