The Combinatorics of Associated Laguerre Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The explicit double sum for the associated Laguerre polynomials is derived combinatorially. The moments are described using certain statistics on permutations and permutation tableaux. Another derivation of the double sum is provided using only the moment generating function.
Keywords: associated Laguerre polynomial; moment of orthogonal polynomials
Mots-clés : permutation tableau.
@article{SIGMA_2015_11_a38,
     author = {Jang Soo Kim and Dennis Stanton},
     title = {The {Combinatorics} of {Associated} {Laguerre} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a38/}
}
TY  - JOUR
AU  - Jang Soo Kim
AU  - Dennis Stanton
TI  - The Combinatorics of Associated Laguerre Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a38/
LA  - en
ID  - SIGMA_2015_11_a38
ER  - 
%0 Journal Article
%A Jang Soo Kim
%A Dennis Stanton
%T The Combinatorics of Associated Laguerre Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a38/
%G en
%F SIGMA_2015_11_a38
Jang Soo Kim; Dennis Stanton. The Combinatorics of Associated Laguerre Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a38/

[1] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978

[2] Corteel S., Josuat-Vergès M., Personal communication

[3] Corteel S., Kim J. S., “Combinatorics on permutation tableaux of type A and type B”, European J. Combin., 32 (2011), 563–579, arXiv: 1006.3812 | DOI

[4] Corteel S., Nadeau P., “Bijections for permutation tableaux”, European J. Combin., 30 (2009), 295–310 | DOI

[5] Corteel S., Williams L. K., “Tableaux combinatorics for the asymmetric exclusion process and Askey–Wilson polynomials”, Duke Math. J., 159 (2011), 385–415, arXiv: 0910.1858 | DOI

[6] Drake D., “The combinatorics of associated Hermite polynomials”, European J. Combin., 30 (2009), 1005–1021, arXiv: 0709.0987 | DOI

[7] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI

[8] Ismail M. E. H., Rahman M., “The associated Askey–Wilson polynomials”, Trans. Amer. Math. Soc., 328 (1991), 201–237 | DOI

[9] Jones W. B., Thron W. J., Continued fractions, Encyclopedia of Mathematics and its Applications, 11, Addison-Wesley Publishing Co., Reading, Mass., 1980

[10] Nadeau P., “The structure of alternative tableaux”, J. Combin. Theory Ser. A, 118 (2011), 1638–1660 | DOI

[11] Postnikov A., Total positivity, Grassmannians, and networks, arXiv: math.CO/0609764

[12] Simion R., Stanton D., “Specializations of generalized Laguerre polynomials”, SIAM J. Math. Anal., 25 (1994), 712–719, arXiv: math.CA/9307219 | DOI

[13] Simion R., Stanton D., “Octabasic Laguerre polynomials and permutation statistics”, J. Comput. Appl. Math., 68 (1996), 297–329 | DOI

[14] Stanley R. P., Enumerative combinatorics, v. 1, Cambridge Studies in Advanced Mathematics, 49, 2nd ed., Cambridge University Press, Cambridge, 2012

[15] Viennot G., “A combinatorial theory for general orthogonal polynomials with extensions and applications”, Orthogonal Polynomials and Applications (Bar-le-Duc, 1984), Lecture Notes in Math., 1171, Springer, Berlin, 1985, 139–157 | DOI

[16] Viennot X., Alternative tableaux, permutations and partially asymmetric exclusion process http://www.newton.ac.uk/webseminars/pg+ws/2008/csm/csmw04/0423/viennot/

[17] Wimp J., “Explicit formulas for the associated Jacobi polynomials and some applications”, Canad. J. Math., 39 (1987), 983–1000 | DOI