Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The invariant classification of superintegrable systems is reviewed and utilized to construct singular limits between the systems. It is shown, by construction, that all superintegrable systems on conformally flat, 3D complex Riemannian manifolds can be obtained from singular limits of a generic system on the sphere. By using the invariant classification, the limits are geometrically motivated in terms of transformations of roots of the classifying polynomials.
Keywords: integrable systems; superintegrable systems; Lie algebra invariants; contractions.
@article{SIGMA_2015_11_a37,
     author = {Joshua J. Capel and Jonathan M. Kress and Sarah Post},
     title = {Invariant {Classification} and {Limits} of {Maximally} {Superintegrable} {Systems~in~3D}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a37/}
}
TY  - JOUR
AU  - Joshua J. Capel
AU  - Jonathan M. Kress
AU  - Sarah Post
TI  - Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a37/
LA  - en
ID  - SIGMA_2015_11_a37
ER  - 
%0 Journal Article
%A Joshua J. Capel
%A Jonathan M. Kress
%A Sarah Post
%T Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a37/
%G en
%F SIGMA_2015_11_a37
Joshua J. Capel; Jonathan M. Kress; Sarah Post. Invariant Classification and Limits of Maximally Superintegrable Systems in 3D. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a37/

[1] Bôcher M., Über die Riehenentwickelungen der Potentialtheory, B.G. Teubner, Leipzig, 1894

[2] Capel J. J., Invariant classification of second-order conformally flat superintegrable systems, Ph.D. Thesis, University of New South Wales, 2014

[3] Capel J. J., Kress J. M., “Invariant classification of second-order conformally flat superintegrable systems”, J. Phys. A: Math. Theor., 47 (2014), 495202, 33 pp., arXiv: 1406.3136 | DOI

[4] Friš J., Mandrosov V., Smorodinsky Ya. A., Uhlíř M., Winternitz P., “On higher symmetries in quantum mechanics”, Phys. Lett., 16 (1965), 354–356 | DOI

[5] Genest V. X., Vinet L., “The generic superintegrable system on the 3-sphere and the $9j$ symbols of $\mathfrak{su}(1,1)$”, SIGMA, 10 (2014), 108, 28 pp., arXiv: 1404.0876 | DOI

[6] Genest V. X., Vinet L., Zhedanov A., “Interbasis expansions for the isotropic 3D harmonic oscillator and bivariate Krawtchouk polynomials”, J. Phys. A: Math. Theor., 47 (2014), 025202, 13 pp., arXiv: 1307.0692 | DOI

[7] Genest V. X., Vinet L., Zhedanov A., “Superintegrability in two dimensions and the Racah–Wilson algebra”, Lett. Math. Phys., 104 (2014), 931–952, arXiv: 1307.5539 | DOI

[8] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. I: An oscillator”, Theoret. and Math. Phys., 91 (1992), 474–480 | DOI

[9] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. II: The Kepler problem”, Theoret. and Math. Phys., 91 (1992), 604–612 | DOI

[10] Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., “Coupling-constant metamorphosis and duality between integrable Hamiltonian systems”, Phys. Rev. Lett., 53 (1984), 1707–1710 | DOI

[11] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. IV: The classical 3D Stäckel transform and 3D classification theory”, J. Math. Phys., 47 (2006), 043514, 26 pp. | DOI

[12] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. V: Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI

[13] Kalnins E. G., Kress J. M., Miller W. (Jr.), Post S., “Laplace-type equations as conformal superintegrable systems”, Adv. in Appl. Math., 46 (2011), 396–416, arXiv: 0908.4316 | DOI

[14] Kalnins E. G., Miller W. (Jr.), “Quadratic algebra contractions and second-order superintegrable systems”, Anal. Appl. (Singap.), 12 (2014), 583–612, arXiv: 1401.0830 | DOI

[15] Kalnins E. G., Miller W. (Jr.), Pogosyan G. S., “Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions”, J. Math. Phys., 37 (1996), 6439–6467 | DOI

[16] Kalnins E. G., Miller W. (Jr.), Post S., “Models of quadratic quantum algebras and their relation to classical superintegrable systems”, Phys. Atomic Nuclei, 72 (2009), 801–808 | DOI

[17] Kalnins E. G., Miller W. (Jr.), Post S., “Coupling constant metamorphosis and $N$th-order symmetries in classical and quantum mechanics”, J. Phys. A: Math. Theor., 43 (2010), 035202, 20 pp., arXiv: 0908.4393 | DOI

[18] Kalnins E. G., Miller W. (Jr.), Post S., “Models for the 3D singular isotropic oscillator quadratic algebra”, Phys. Atomic Nuclei, 73 (2010), 359–366 | DOI

[19] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI

[20] Kress J. M., “Equivalence of superintegrable systems in two dimensions”, Phys. Atomic Nuclei, 70 (2007), 560–566 | DOI

[21] Makarov A. A., Smorodinsky J. A., Valiev K., Winternitz P., “A systematic search for nonrelativistic systems with dynamical symmetries”, Nuovo Cimento A, 52 (1967), 1061–1084 | DOI

[22] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI

[23] Nehorosheev N. N., “Action-angle variables, and their generalizations”, Trans. Moscow Math. Soc., 26 (1972), 181–198

[24] Post S., “Coupling constant metamorphosis, the Stäckel transform and superintegrability”, AIP Conf. Proc., 1323 (2011), 265–274 | DOI

[25] Post S., “Models of quadratic algebras generated by superintegrable systems in 2D”, SIGMA, 7 (2011), 036, 20 pp., arXiv: 1104.0734 | DOI

[26] Tempesta P., Turbiner A. V., Winternitz P., “Exact solvability of superintegrable systems”, J. Math. Phys., 42 (2001), 4248–4257 | DOI

[27] Winternitz P., Smorodinsky Ya. A., Uhlíř M., Friš I., “Symmetry groups in classical and quantum mechanics”, Soviet J. Nuclear Phys., 4 (1967), 444–450