@article{SIGMA_2015_11_a37,
author = {Joshua J. Capel and Jonathan M. Kress and Sarah Post},
title = {Invariant {Classification} and {Limits} of {Maximally} {Superintegrable} {Systems~in~3D}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a37/}
}
TY - JOUR AU - Joshua J. Capel AU - Jonathan M. Kress AU - Sarah Post TI - Invariant Classification and Limits of Maximally Superintegrable Systems in 3D JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a37/ LA - en ID - SIGMA_2015_11_a37 ER -
%0 Journal Article %A Joshua J. Capel %A Jonathan M. Kress %A Sarah Post %T Invariant Classification and Limits of Maximally Superintegrable Systems in 3D %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a37/ %G en %F SIGMA_2015_11_a37
Joshua J. Capel; Jonathan M. Kress; Sarah Post. Invariant Classification and Limits of Maximally Superintegrable Systems in 3D. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a37/
[1] Bôcher M., Über die Riehenentwickelungen der Potentialtheory, B.G. Teubner, Leipzig, 1894
[2] Capel J. J., Invariant classification of second-order conformally flat superintegrable systems, Ph.D. Thesis, University of New South Wales, 2014
[3] Capel J. J., Kress J. M., “Invariant classification of second-order conformally flat superintegrable systems”, J. Phys. A: Math. Theor., 47 (2014), 495202, 33 pp., arXiv: 1406.3136 | DOI
[4] Friš J., Mandrosov V., Smorodinsky Ya. A., Uhlíř M., Winternitz P., “On higher symmetries in quantum mechanics”, Phys. Lett., 16 (1965), 354–356 | DOI
[5] Genest V. X., Vinet L., “The generic superintegrable system on the 3-sphere and the $9j$ symbols of $\mathfrak{su}(1,1)$”, SIGMA, 10 (2014), 108, 28 pp., arXiv: 1404.0876 | DOI
[6] Genest V. X., Vinet L., Zhedanov A., “Interbasis expansions for the isotropic 3D harmonic oscillator and bivariate Krawtchouk polynomials”, J. Phys. A: Math. Theor., 47 (2014), 025202, 13 pp., arXiv: 1307.0692 | DOI
[7] Genest V. X., Vinet L., Zhedanov A., “Superintegrability in two dimensions and the Racah–Wilson algebra”, Lett. Math. Phys., 104 (2014), 931–952, arXiv: 1307.5539 | DOI
[8] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. I: An oscillator”, Theoret. and Math. Phys., 91 (1992), 474–480 | DOI
[9] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamics in curved space. II: The Kepler problem”, Theoret. and Math. Phys., 91 (1992), 604–612 | DOI
[10] Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., “Coupling-constant metamorphosis and duality between integrable Hamiltonian systems”, Phys. Rev. Lett., 53 (1984), 1707–1710 | DOI
[11] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. IV: The classical 3D Stäckel transform and 3D classification theory”, J. Math. Phys., 47 (2006), 043514, 26 pp. | DOI
[12] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. V: Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI
[13] Kalnins E. G., Kress J. M., Miller W. (Jr.), Post S., “Laplace-type equations as conformal superintegrable systems”, Adv. in Appl. Math., 46 (2011), 396–416, arXiv: 0908.4316 | DOI
[14] Kalnins E. G., Miller W. (Jr.), “Quadratic algebra contractions and second-order superintegrable systems”, Anal. Appl. (Singap.), 12 (2014), 583–612, arXiv: 1401.0830 | DOI
[15] Kalnins E. G., Miller W. (Jr.), Pogosyan G. S., “Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions”, J. Math. Phys., 37 (1996), 6439–6467 | DOI
[16] Kalnins E. G., Miller W. (Jr.), Post S., “Models of quadratic quantum algebras and their relation to classical superintegrable systems”, Phys. Atomic Nuclei, 72 (2009), 801–808 | DOI
[17] Kalnins E. G., Miller W. (Jr.), Post S., “Coupling constant metamorphosis and $N$th-order symmetries in classical and quantum mechanics”, J. Phys. A: Math. Theor., 43 (2010), 035202, 20 pp., arXiv: 0908.4393 | DOI
[18] Kalnins E. G., Miller W. (Jr.), Post S., “Models for the 3D singular isotropic oscillator quadratic algebra”, Phys. Atomic Nuclei, 73 (2010), 359–366 | DOI
[19] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI
[20] Kress J. M., “Equivalence of superintegrable systems in two dimensions”, Phys. Atomic Nuclei, 70 (2007), 560–566 | DOI
[21] Makarov A. A., Smorodinsky J. A., Valiev K., Winternitz P., “A systematic search for nonrelativistic systems with dynamical symmetries”, Nuovo Cimento A, 52 (1967), 1061–1084 | DOI
[22] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI
[23] Nehorosheev N. N., “Action-angle variables, and their generalizations”, Trans. Moscow Math. Soc., 26 (1972), 181–198
[24] Post S., “Coupling constant metamorphosis, the Stäckel transform and superintegrability”, AIP Conf. Proc., 1323 (2011), 265–274 | DOI
[25] Post S., “Models of quadratic algebras generated by superintegrable systems in 2D”, SIGMA, 7 (2011), 036, 20 pp., arXiv: 1104.0734 | DOI
[26] Tempesta P., Turbiner A. V., Winternitz P., “Exact solvability of superintegrable systems”, J. Math. Phys., 42 (2001), 4248–4257 | DOI
[27] Winternitz P., Smorodinsky Ya. A., Uhlíř M., Friš I., “Symmetry groups in classical and quantum mechanics”, Soviet J. Nuclear Phys., 4 (1967), 444–450