Quantum Integrals for a Semi-Infinite $q$-Boson System with Boundary Interactions
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide explicit formulas for the quantum integrals of a semi-infinite $q$-boson system with boundary interactions. These operators and their commutativity are deduced from the Pieri formulas for a $q\to 0$ Hall–Littlewood type degeneration of the Macdonald–Koornwinder polynomials.
Keywords: $q$-bosons; boundary interactions; Hall–Littlewood functions; hyperoctahedral symmetry; Pieri formulas; integrability.
@article{SIGMA_2015_11_a36,
     author = {Jan Felipe van Diejen and Erdal Emsiz},
     title = {Quantum {Integrals} for {a~Semi-Infinite} $q${-Boson} {System} with {Boundary} {Interactions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a36/}
}
TY  - JOUR
AU  - Jan Felipe van Diejen
AU  - Erdal Emsiz
TI  - Quantum Integrals for a Semi-Infinite $q$-Boson System with Boundary Interactions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a36/
LA  - en
ID  - SIGMA_2015_11_a36
ER  - 
%0 Journal Article
%A Jan Felipe van Diejen
%A Erdal Emsiz
%T Quantum Integrals for a Semi-Infinite $q$-Boson System with Boundary Interactions
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a36/
%G en
%F SIGMA_2015_11_a36
Jan Felipe van Diejen; Erdal Emsiz. Quantum Integrals for a Semi-Infinite $q$-Boson System with Boundary Interactions. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a36/

[1] Bogoliubov N. M., Izergin A. G., Kitanine N. A., “Correlation functions for a strongly correlated boson system”, Nuclear Phys. B, 516 (1998), 501–528, arXiv: solv-int/9710002 | DOI

[2] Borodin A., Corwin I., Petrov L., Sasamoto T., Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz, arXiv: 1407.8534

[3] van Diejen J. F., “Properties of some families of hypergeometric orthogonal polynomials in several variables”, Trans. Amer. Math. Soc., 351 (1999), 233–270, arXiv: q-alg/9604004 | DOI

[4] van Diejen J. F., “Scattering theory of discrete (pseudo) Laplacians on a Weyl chamber”, Amer. J. Math., 127 (2005), 421–458, arXiv: math-ph/0412097 | DOI

[5] van Diejen J. F., “Diagonalization of an integrable discretization of the repulsive delta Bose gas on the circle”, Comm. Math. Phys., 267 (2006), 451–476, arXiv: math-ph/0604029 | DOI

[6] van Diejen J. F., Emsiz E., “Boundary interactions for the semi-infinite $q$-boson system and hyperoctahedral Hall–Littlewood polynomials”, SIGMA, 9 (2013), 077, 12 pp., arXiv: 1312.1028 | DOI

[7] van Diejen J. F., Emsiz E., “Diagonalization of the infinite $q$-boson system”, J. Funct. Anal., 266 (2014), 5801–5817, arXiv: 1308.2237 | DOI

[8] van Diejen J. F., Emsiz E., “The semi-infinite $q$-boson system with boundary interaction”, Lett. Math. Phys., 104 (2014), 103–113, arXiv: 1308.2242 | DOI

[9] van Diejen J. F., Emsiz E., Branching formula for Macdonald–Koornwinder polynomials, arXiv: 1408.2280

[10] van Diejen J. F., Vinet L., “The quantum dynamics of the compactified trigonometric Ruijsenaars–Schneider model”, Comm. Math. Phys., 197 (1998), 33–74, arXiv: math/9709221 | DOI

[11] Dorlas T. C., “Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schroedinger model”, Comm. Math. Phys., 154 (1993), 347–376 | DOI

[12] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI

[13] Komori Y., Noumi M., Shiraishi J., “Kernel functions for difference operators of Ruijsenaars type and their applications”, SIGMA, 5 (2009), 054, 40 pp., arXiv: 0812.0279 | DOI

[14] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type $BC$”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | DOI

[15] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993 | DOI

[16] Korff C., “Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra”, Comm. Math. Phys., 318 (2013), 173–246, arXiv: 1110.6356 | DOI

[17] Lieb E. H., Liniger W., “Exact analysis of an interacting Bose gas. I: The general solution and the ground state”, Phys. Rev., 130 (1963), 1605–1616 | DOI

[18] Macdonald I. G., “Orthogonal polynomials associated with root systems”, Sém. Lothar. Combin., 45 (2000), B45a, 40 pp., arXiv: math.QA/0011046

[19] Macdonald I. G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | DOI

[20] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI

[21] Povolotsky A. M., “On the integrability of zero-range chipping models with factorized steady states”, J. Phys. A: Math. Theor., 46 (2013), 465205, 25 pp., arXiv: 1308.3250 | DOI

[22] Ruijsenaars S. N. M., “Finite-dimensional soliton systems”, Integrable and Superintegrable Systems, World Sci. Publ., Teaneck, NJ, 1990, 165–206 | DOI

[23] Ruijsenaars S. N. M., “Factorized weight functions vs. factorized scattering”, Comm. Math. Phys., 228 (2002), 467–494 | DOI

[24] Sasamoto T., Wadati M., “Exact results for one-dimensional totally asymmetric diffusion models”, J. Phys. A: Math. Gen., 31 (1998), 6057–6071 | DOI

[25] Takeyama Y., “A deformation of affine Hecke algebra and integrable stochastic particle system”, J. Phys. A: Math. Theor., 47 (2014), 465203, 19 pp., arXiv: 1407.1960 | DOI

[26] Tsilevich N. V., “The quantum inverse scattering problem method for the $q$-boson model, and symmetric functions”, Funct. Anal. Appl., 40 (2006), 207–217, arXiv: math-ph/0510073 | DOI

[27] Venkateswaran V., “Symmetric and nonsymmetric Hall–Littlewood polynomials of type $BC$”, arXiv: 1209.2933