On a Quantization of the Classical $\theta$-Functions
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Jacobi theta-functions admit a definition through the autonomous differential equations (dynamical system); not only through the famous Fourier theta-series. We study this system in the framework of Hamiltonian dynamics and find corresponding Poisson brackets. Availability of these ingredients allows us to state the problem of a canonical quantization to these equations and disclose some important problems. In a particular case the problem is completely solvable in the sense that spectrum of the Hamiltonian can be found. The spectrum is continuous, has a band structure with infinite number of lacunae, and is determined by the Mathieu equation: the Schrödinger equation with a periodic cos-type potential.
Keywords: Jacobi theta-functions; dynamical systems; Poisson brackets; quantization; spectrum of Hamiltonian.
@article{SIGMA_2015_11_a34,
     author = {Yurii V. Brezhnev},
     title = {On {a~Quantization} of the {Classical} $\theta${-Functions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a34/}
}
TY  - JOUR
AU  - Yurii V. Brezhnev
TI  - On a Quantization of the Classical $\theta$-Functions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a34/
LA  - en
ID  - SIGMA_2015_11_a34
ER  - 
%0 Journal Article
%A Yurii V. Brezhnev
%T On a Quantization of the Classical $\theta$-Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a34/
%G en
%F SIGMA_2015_11_a34
Yurii V. Brezhnev. On a Quantization of the Classical $\theta$-Functions. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a34/

[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964

[2] Baker H. F., Abelian functions. Abel's theorem and the allied theory of theta functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995

[3] Bostan A., Chèze G., Cluzeau T., Weil J.-A., Efficient algorithms for computing rational first integrals and Darboux polynomials of planar polynomial vector fields, arXiv: 1310.2778

[4] Brezhnev Yu. V. , “What does integrability of finite-gap or soliton potentials mean?”, Philos. Trans. R. Soc. Lond. Ser. A, 366 (2008), 923–945, arXiv: nlin.SI/0505003 | DOI

[5] Brezhnev Yu. V., “Non-canonical extension of $\theta$-functions and modular integrability of $\vartheta$-constants”, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 689–738, arXiv: 1011.1643 | DOI

[6] Brezhnev Yu. V., Lyakhovich S. L., Sharapov A. A., “Dynamical systems defining Jacobi's $\vartheta$-constants”, J. Math. Phys., 52 (2011), 112704, 21 pp., arXiv: 1012.1429 | DOI

[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. III, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1955

[8] Ince E. L., “Researches into the characteristic numbers of the Mathieu equation”, Proc. Roy. Soc. Edinburgh, 46 (1927), 20–29 | DOI

[9] Landau L. D., Lifshitz E. M., Mechanics, Pergamon Press, Oxford–London–New York–Paris, 1960

[10] Landau L. D., Lifshitz E. M., Quantum mechanics: non-relativistic theory, Pergamon Press, London, 1981

[11] Lawden D. F., Elliptic functions and applications, Applied Mathematical Sciences, 80, Springer-Verlag, New York, 1989 | DOI

[12] McLachlan N. W., Theory and application of Mathieu functions, Clarendon Press, Oxford, 1947

[13] Nayfeh A. H., Introduction to perturbation techniques, John Wiley Sons, New York, 1981

[14] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI

[15] Smirnov F. A., What are we quantizing in integrable field theory?, St. Petersburg Math. J., 6 (1995), 417–428, arXiv: hep-th/9307097

[16] Tannery J., Molk J., Éléments de la théorie des fonctions elliptiques, v. IV, Gauthier-Villars, Paris, 1902

[17] Vanhaecke P., “Algebraic integrability: a survey”, Philos. Trans. R. Soc. Lond. Ser. A, 366 (2008), 1203–1224 | DOI

[18] Whittaker E. T., Watson G. N., A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI

[19] Yakubovich V. A., Starzhinskij V. M., Linear differential equations with periodic coefficients, v. 1, 2, John Wiley Sons, New York–Toronto, 1975