A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Lie algebra $\mathfrak{g}_\mathbb{Q}$ over $\mathbb{Q}$ is said to be $\mathbb{R}$-universal if every homomorphism from $\mathfrak{g}_\mathbb{Q}$ to $\mathfrak{gl}(n,\mathbb{R})$ is conjugate to a homomorphism into $\mathfrak{gl}(n,\mathbb{Q})$ (for every $n$). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an $\mathbb{R}$-universal $\mathbb{Q}$-form. We also provide a classification of the $\mathbb{R}$-universal Lie algebras that are semisimple.
Keywords: semisimple Lie algebra; finite-dimensional representation; global field; Galois cohomology; linear algebraic group; Tits algebra.
@article{SIGMA_2015_11_a33,
     author = {Dave Witte Morris},
     title = {A {Cohomological} {Proof} that {Real} {Representations} of {Semisimple} {Lie~Algebras} {Have} $\mathbb{Q}${-Forms}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a33/}
}
TY  - JOUR
AU  - Dave Witte Morris
TI  - A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a33/
LA  - en
ID  - SIGMA_2015_11_a33
ER  - 
%0 Journal Article
%A Dave Witte Morris
%T A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a33/
%G en
%F SIGMA_2015_11_a33
Dave Witte Morris. A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a33/

[1] Demazure M., Grothendieck A., Séminaire de géométrie algébrique du Bois Marie, 1962/1964, v. III, Structure des schémas en groupes reductifs http://library.msri.org/books/sga/sga/pdf/sga3-3.pdf

[2] Harder G., “Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen”, Jber. Deutsch. Math.-Verein., 70 (1968), 182–216 http://www.digizeitschriften.de/en/dms/img/?PPN=PPN37721857X_0070&DMDID=dmdlog17

[3] Kneser M., Lectures on Galois cohomology of classical groups, Tata Institute of Fundamental Research Lectures on Mathematics, 47, Tata Institute of Fundamental Research, Bombay, 1969 http://www.math.tifr.res.in/p̃ubl/ln/tifr47.pdf

[4] Knus M. A., Merkurjev A., Rost M., Tignol J. P., The book of involutions, American Mathematical Society Colloquium Publications, 44, Amer. Math. Soc., Providence, RI, 1998

[5] Lam T. Y., Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, Amer. Math. Soc., Providence, RI, 2005

[6] Morris D., “Real representations of semisimple Lie algebras have $\mathbb{Q}$-forms”, Algebraic Groups and Arithmetic, Tata Institute of Fundamental Research, Mumbai, 2004, 469–490

[7] Platonov V., Rapinchuk A., Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994

[8] Prasad G., Rapinchuk A., “On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior”, Adv. Math., 207 (2006), 646–660 | DOI

[9] Raghunathan M. S., “Arithmetic lattices in semisimple groups”, Proc. Indian Acad. Sci. Math. Sci., 91 (1982), 133–138 | DOI

[10] Tits J., “Classification of algebraic semisimple groups”, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math. (Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, 33–62 | DOI

[11] Tits J., “Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque”, J. Reine Angew. Math., 247 (1971), 196–220 | DOI

[12] Tits J., “Strongly inner anisotropic forms of simple algebraic groups”, J. Algebra, 131 (1990), 648–677 | DOI