@article{SIGMA_2015_11_a33,
author = {Dave Witte Morris},
title = {A {Cohomological} {Proof} that {Real} {Representations} of {Semisimple} {Lie~Algebras} {Have} $\mathbb{Q}${-Forms}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a33/}
}
TY - JOUR
AU - Dave Witte Morris
TI - A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms
JO - Symmetry, integrability and geometry: methods and applications
PY - 2015
VL - 11
UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a33/
LA - en
ID - SIGMA_2015_11_a33
ER -
%0 Journal Article
%A Dave Witte Morris
%T A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a33/
%G en
%F SIGMA_2015_11_a33
Dave Witte Morris. A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a33/
[1] Demazure M., Grothendieck A., Séminaire de géométrie algébrique du Bois Marie, 1962/1964, v. III, Structure des schémas en groupes reductifs http://library.msri.org/books/sga/sga/pdf/sga3-3.pdf
[2] Harder G., “Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen”, Jber. Deutsch. Math.-Verein., 70 (1968), 182–216 http://www.digizeitschriften.de/en/dms/img/?PPN=PPN37721857X_0070&DMDID=dmdlog17
[3] Kneser M., Lectures on Galois cohomology of classical groups, Tata Institute of Fundamental Research Lectures on Mathematics, 47, Tata Institute of Fundamental Research, Bombay, 1969 http://www.math.tifr.res.in/p̃ubl/ln/tifr47.pdf
[4] Knus M. A., Merkurjev A., Rost M., Tignol J. P., The book of involutions, American Mathematical Society Colloquium Publications, 44, Amer. Math. Soc., Providence, RI, 1998
[5] Lam T. Y., Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, Amer. Math. Soc., Providence, RI, 2005
[6] Morris D., “Real representations of semisimple Lie algebras have $\mathbb{Q}$-forms”, Algebraic Groups and Arithmetic, Tata Institute of Fundamental Research, Mumbai, 2004, 469–490
[7] Platonov V., Rapinchuk A., Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994
[8] Prasad G., Rapinchuk A., “On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior”, Adv. Math., 207 (2006), 646–660 | DOI
[9] Raghunathan M. S., “Arithmetic lattices in semisimple groups”, Proc. Indian Acad. Sci. Math. Sci., 91 (1982), 133–138 | DOI
[10] Tits J., “Classification of algebraic semisimple groups”, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math. (Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, 33–62 | DOI
[11] Tits J., “Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque”, J. Reine Angew. Math., 247 (1971), 196–220 | DOI
[12] Tits J., “Strongly inner anisotropic forms of simple algebraic groups”, J. Algebra, 131 (1990), 648–677 | DOI