@article{SIGMA_2015_11_a32,
author = {Yuki Kanakubo and Toshiki Nakashima},
title = {Cluster {Variables} on {Certain} {Double} {Bruhat} {Cells} of {Type} $(u,e)$ and {Monomial} {Realizations} of {Crystal} {Bases} of {Type~A}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a32/}
}
TY - JOUR AU - Yuki Kanakubo AU - Toshiki Nakashima TI - Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a32/ LA - en ID - SIGMA_2015_11_a32 ER -
%0 Journal Article %A Yuki Kanakubo %A Toshiki Nakashima %T Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a32/ %G en %F SIGMA_2015_11_a32
Yuki Kanakubo; Toshiki Nakashima. Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a32/
[1] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III: Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI
[2] Berenstein A., Zelevinsky A., “Tensor product multiplicities, canonical bases and totally positive varieties”, Invent. Math., 143 (2001), 77–128, arXiv: math.RT/9912012 | DOI
[3] Fomin S., Zelevinsky A., “Double Bruhat cells and total positivity”, J. Amer. Math. Soc., 12 (1999), 335–380, arXiv: math.RT/9802056 | DOI
[4] Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, 167, Amer. Math. Soc., 2010
[5] Hong J., Kang S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., Providence, RI, 2002
[6] Kashiwara M., “On crystal bases of the $Q$-analogue of universal enveloping algebras”, Duke Math. J., 63 (1991), 465–516 | DOI
[7] Kashiwara M., Bases cristallines des groupes quantiques, Cours Spécialisés, v. 9, Société Mathématique de France, Paris, 2002
[8] Kashiwara M., “Realizations of crystals”, Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., 325, Amer. Math. Soc., Providence, RI, 2003, 133–139, arXiv: math.QA/0202268 | DOI
[9] Kashiwara M., Nakashima T., “Crystal graphs for representations of the $q$-analogue of classical Lie algebras”, J. Algebra, 165 (1994), 295–345 | DOI
[10] Nakajima H., “$t$-analogs of $q$-characters of quantum affine algebras of type $A_n$, $D_n$”, Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., 325, Amer. Math. Soc., Providence, RI, 2003, 141–160, arXiv: math.QA/0204184 | DOI
[11] Nakashima T., “Decorations on geometric crystals and monomial realizations of crystal bases for classical groups”, J. Algebra, 399 (2014), 712–769, arXiv: 1301.7301 | DOI