Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a simply connected simple algebraic group over $\mathbb{C}$, $B$ and $B_-$ be two opposite Borel subgroups in $G$ and $W$ be the Weyl group. For $u$, $v\in W$, it is known that the coordinate ring ${\mathbb C}[G^{u,v}]$ of the double Bruhat cell $G^{u,v}=BuB\cap B_-vB_-$ is isomorphic to an upper cluster algebra $\bar{\mathcal{A}}(\mathbf{i})_{{\mathbb C}}$ and the generalized minors $\{\Delta(k;{\mathbf{i}})\}$ are the cluster variables belonging to a given initial seed in ${\mathbb C}[G^{u,v}]$ [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1–52]. In the case $G={\rm SL}_{r+1}({\mathbb C})$, $v=e$ and some special $u\in W$, we shall describe the generalized minors $\{\Delta(k;{\mathbf{i}})\}$ as summations of monomial realizations of certain Demazure crystals.
Keywords: cluster variables; double Bruhat cells; crystal bases; monomial realizations, generalized minors.
@article{SIGMA_2015_11_a32,
     author = {Yuki Kanakubo and Toshiki Nakashima},
     title = {Cluster {Variables} on {Certain} {Double} {Bruhat} {Cells} of {Type} $(u,e)$ and {Monomial} {Realizations} of {Crystal} {Bases} of {Type~A}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a32/}
}
TY  - JOUR
AU  - Yuki Kanakubo
AU  - Toshiki Nakashima
TI  - Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a32/
LA  - en
ID  - SIGMA_2015_11_a32
ER  - 
%0 Journal Article
%A Yuki Kanakubo
%A Toshiki Nakashima
%T Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a32/
%G en
%F SIGMA_2015_11_a32
Yuki Kanakubo; Toshiki Nakashima. Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a32/

[1] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III: Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI

[2] Berenstein A., Zelevinsky A., “Tensor product multiplicities, canonical bases and totally positive varieties”, Invent. Math., 143 (2001), 77–128, arXiv: math.RT/9912012 | DOI

[3] Fomin S., Zelevinsky A., “Double Bruhat cells and total positivity”, J. Amer. Math. Soc., 12 (1999), 335–380, arXiv: math.RT/9802056 | DOI

[4] Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, 167, Amer. Math. Soc., 2010

[5] Hong J., Kang S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., Providence, RI, 2002

[6] Kashiwara M., “On crystal bases of the $Q$-analogue of universal enveloping algebras”, Duke Math. J., 63 (1991), 465–516 | DOI

[7] Kashiwara M., Bases cristallines des groupes quantiques, Cours Spécialisés, v. 9, Société Mathématique de France, Paris, 2002

[8] Kashiwara M., “Realizations of crystals”, Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., 325, Amer. Math. Soc., Providence, RI, 2003, 133–139, arXiv: math.QA/0202268 | DOI

[9] Kashiwara M., Nakashima T., “Crystal graphs for representations of the $q$-analogue of classical Lie algebras”, J. Algebra, 165 (1994), 295–345 | DOI

[10] Nakajima H., “$t$-analogs of $q$-characters of quantum affine algebras of type $A_n$, $D_n$”, Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., 325, Amer. Math. Soc., Providence, RI, 2003, 141–160, arXiv: math.QA/0204184 | DOI

[11] Nakashima T., “Decorations on geometric crystals and monomial realizations of crystal bases for classical groups”, J. Algebra, 399 (2014), 712–769, arXiv: 1301.7301 | DOI