@article{SIGMA_2015_11_a31,
author = {Aleksandr O. Smirnov and Sergei G. Matveenko and Sergei K. Semenov and Elena G. Semenova},
title = {Three-Phase {Freak} {Waves}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a31/}
}
TY - JOUR AU - Aleksandr O. Smirnov AU - Sergei G. Matveenko AU - Sergei K. Semenov AU - Elena G. Semenova TI - Three-Phase Freak Waves JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a31/ LA - en ID - SIGMA_2015_11_a31 ER -
Aleksandr O. Smirnov; Sergei G. Matveenko; Sergei K. Semenov; Elena G. Semenova. Three-Phase Freak Waves. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a31/
[1] Akhiezer N. I., Elements of the theory of elliptic functions, Translations of Mathematical Monographs, 79, Amer. Math. Soc., Providence, RI, 1990
[2] Akhmediev N. N., Ankiewicz A., Solitons, nonlinear pulses and beams, Chapman Hall, London, 1997
[3] Akhmediev N., Pelinovsky E. (eds.), Discussion debate: rogue waves – towards a unifying concept?, Eur. Phys. J. Special Topics, 185, 2010, 266 pp. | DOI
[4] Ankiewicz A., Soto-Crespo J. M., Akhmediev N., “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81 (2010), 046602, 8 pp. | DOI
[5] Baker H. F., Abel's theorem and the allied theory including the theory of theta functions, Cambridge University Press, Cambridge, 1897
[6] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometric approach to nonlinear integrable equations, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994
[7] Chiao R. Y., Garmire E., Townes C. H., “Self-trapping of optical beams”, Phys. Rev. Lett., 13 (1964), 479–482 | DOI
[8] Dai C. Q., Zhang J. F., “New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients”, J. Phys. A: Math. Gen., 39 (2006), 723–737 | DOI
[9] Dubrovin B. A., “Inverse problem for periodic finite-zoned potentials in the theory of scattering”, Funct. Anal. Appl., 9 (1975), 61–62 | DOI
[10] Dubrovin B. A., “Periodic problems for the Korteweg–de Vries equation in the class of finite band potentials”, Funct. Anal. Appl., 9 (1975), 215–223 | DOI
[11] Dubrovin B. A., “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI
[12] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nonlinear equations of Korteweg–de Vries type, finite-band linear operators and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI
[13] Dubrovin B. A., Novikov S. P., “A periodicity problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry”, Sov. Math. Dokl., 15 (1974), 1597–1601
[14] Fay J. D., Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973
[15] Gesztesy F., Holden H., Soliton equations and their algebro-geometric solutions, v. I, Cambridge Studies in Advanced Mathematics, 79, $(1+1)$-dimensional continuous models, Cambridge University Press, Cambridge, 2003 | DOI
[16] Gesztesy F., Holden H., Michor J., Teschl G., Soliton equations and their algebro-geometric solutions, v. II, Cambridge Studies in Advanced Mathematics, 114, $(1+1)$-dimensional discrete models, Cambridge University Press, Cambridge, 2008 | DOI
[17] Guo B., Ling L., Liu Q. P., “Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions”, Phys. Rev. E, 85 (2012), 026607, 9 pp., arXiv: 1108.2867 | DOI
[18] Its A. R., “Inversion of hyperelliptic integrals, and integration of nonlinear differential equations”, Vestnik Leningrad. Univ., 1976, no. 7, 39–46
[19] Its A. R., ““Isomonodromy” solutions of equations of zero curvature”, Math. USSR-Izv., 26 (1986), 497–529 | DOI
[20] Its A. R., Kotlyarov V. P., “On a class of solutions of the nonlinear Schrödinger equation”, Dokl. Akad. Nauk USSR Ser. A, 11 (1976), 965–968
[21] Its A. R., Matveev V. B., Hill's operator with finitely many gaps, 9 (1975), 65–66 | DOI
[22] Its A. R., Matveev V. B., “Schrödinger operators with the finite-band spectrum and $N$-soliton solutions of the Korteweg–de Vries equation”, Theoret. and Math. Phys., 23 (1975), 343–355 | DOI
[23] Kalla C., Klein C., “New construction of algebro-geometric solutions to the Camassa–Holm equation and their numerical evaluation”, Proc. R. Soc. Lond. Ser. A, 468 (2012), 1371–1390, arXiv: 1109.5301 | DOI
[24] Kalla C., Klein C., “On the numerical evaluation of algebro-geometric solutions to integrable equations”, Nonlinearity, 25 (2012), 569–596, arXiv: 1107.2108 | DOI
[25] Krazer A., Lehrbuch der Thetafunktionen, Teubner, Leipzig, 1903
[26] Krichever I. M., “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI
[27] Kundu A., Mukherjee A., Naskar T., “Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents”, Proc. R. Soc. Lond. Ser. A, 470 (2014), 20130576, 20 pp., arXiv: 1204.0916 | DOI
[28] Kuznetsov E. A., “Solitons in a parametrically unstable plasma”, Sov. Phys. Dokl., 22 (1977), 507–508
[29] Lax P. D., “Periodic solutions of the KdV equations”, Nonlinear Wave Motion, Proc. AMS-SIAM Summer Sem. (Clarkson Coll. Tech., Potsdam, N.Y., 1972), Lectures in Appl. Math., 15, Amer. Math. Soc., Providence, R.I., 1974, 85–96
[30] Li C. Z., He J. S., “Darboux transformation and positons of the inhomogeneous Hirota and the Maxwell–Bloch equation”, Sci. China Phys. Mech. Astronomy, 57 (2014), 898–907, arXiv: 1210.2501 | DOI
[31] Marchenko V. A., “The periodic Korteweg–de Vries problem”, Math. USSR Sb., 24 (1974), 319–344 | DOI
[32] Matveev V. B., “30 years of finite-gap integration theory”, Philos. Trans. R. Soc. Lond. Ser. A, 366 (2008), 837–875 | DOI
[33] McKean H. P., van Moerbeke P., “The spectrum of Hill's equation”, Invent. Math., 30 (1975), 217–274 | DOI
[34] Mumford D., Tata lectures on theta, v. II, Progress in Mathematics, 43, Jacobian theta functions and differential equations, Birkhäuser Boston, Inc., Boston, MA, 1984 | DOI
[35] Novikov S. P., “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8 (1974), 236–246 | DOI
[36] Previato E., “Hyperelliptic quasiperiodic and soliton solutions of the nonlinear Schrödinger equation”, Duke Math. J., 52 (1985), 329–377 | DOI
[37] Smirnov A. O., “A matrix analogue of a theorem of Appell and reductions of multidimensional Riemann theta-functions”, Math. USSR Sb., 61 (1988), 379–388 | DOI
[38] Smirnov A. O., “Elliptic solutions of the nonlinear Schrödinger equation and a modified Korteweg–de Vries equation”, Mat. Sb., 185 (1994), 103–114 | DOI
[39] Smirnov A. O., “Solution of a nonlinear Schrödinger equation in the form of two-phase freak waves”, Theoret. and Math. Phys., 173 (2012), 1403–1416 | DOI
[40] Smirnov A. O., “Periodic two-phase “rogue waves””, Math. Notes, 94 (2013), 897–907 | DOI
[41] Smirnov A. O., Semenova E. G., Zinger V., Zinger N., On a periodic solution of the focusing nonlinear Schrödinger equation, arXiv: 1407.7974
[42] Wang L. H., Porsezian K., He J. S., “Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation”, Phys. Rev. E, 87 (2013), 053202, 10 pp., arXiv: 1304.8085 | DOI
[43] Yan Z., “Vector financial rogue waves”, Phys. Lett. A, 375 (2011), 4274–4279, arXiv: 1101.3107 | DOI
[44] Zakharov V. E., “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys., 9 (1968), 190–194 | DOI