Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we develop some elementary aspects of a theory of symmetry in sub-Lorentzian geometry. First of all we construct invariants characterizing isometric classes of sub-Lorentzian contact $3$ manifolds. Next we characterize vector fields which generate isometric and conformal symmetries in general sub-Lorentzian manifolds. We then focus attention back to the case where the underlying manifold is a contact $3$ manifold and more specifically when the manifold is also a Lie group and the structure is left-invariant.
Keywords: sub-Lorentzian; contact distribution; left-invariant; symmetry.
@article{SIGMA_2015_11_a30,
     author = {Marek Grochowski and Ben Warhurst},
     title = {Invariants and {Infinitesimal} {Transformations} for {Contact} {Sub-Lorentzian} {Structures} on {3-Dimensional} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a30/}
}
TY  - JOUR
AU  - Marek Grochowski
AU  - Ben Warhurst
TI  - Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a30/
LA  - en
ID  - SIGMA_2015_11_a30
ER  - 
%0 Journal Article
%A Marek Grochowski
%A Ben Warhurst
%T Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a30/
%G en
%F SIGMA_2015_11_a30
Marek Grochowski; Ben Warhurst. Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a30/

[1] Agrachev A. A., Barilari D., “Sub-Riemannian structures on 3D Lie groups”, J. Dyn. Control Syst., 18 (2012), 21–44, arXiv: 1007.4970 | DOI

[2] Agrachev A. A., El Alaoui El-H. Ch., Gauthier J.-P., “Sub-Riemannian metrics on ${\mathbb R}^3$”, Geometric Control and Non-Holonomic Mechanics (Mexico City, 1996), CMS Conf. Proc., 25, Amer. Math. Soc., Providence, RI, 1998, 29–78

[3] Beem J. K., Ehrlich P. E., Easley K. L., Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, 202, 2nd ed., Marcel Dekker, Inc., New York, 1996

[4] Berestovskii V. N., Gichev V. M., “Metrized semigroups”, J. Math. Sci., 19 (2004), 10–29 | DOI

[5] Boarotto F., Conformal equivalence of sub-Riemannian 3D contact structures on Lie groups, arXiv: 1412.2358

[6] Čap A., “Automorphism groups of parabolic geometries”, Rend. Circ. Mat. Palermo, 2005, suppl., 233–239

[7] El Alaoui El-H.Ch., Gauthier J.-P., Kupka I., “Small sub-Riemannian balls in $\mathbb{R}^3$”, J. Dyn. Control Syst., 2 (1996), 359–421 | DOI

[8] Falbel E., Gorodski C., “Sub-Riemannian homogeneous spaces in dimensions $3$ and $4$”, Geom. Dedicata, 62 (1996), 227–252 | DOI

[9] Grochowski M., “Normal forms of germs of contact sub-Lorentzian structures on $\mathbb{R}^3$. Differentiability of the sub-Lorentzian distance function”, J. Dynam. Control Systems, 9 (2003), 531–547 | DOI

[10] Grochowski M., “On the Heisenberg sub-Lorentzian metric on $\mathbb R^3$”, Geometric Singularity Theory, Banach Center Publ., 65, Polish Acad. Sci., Warsaw, 2004, 57–65 | DOI

[11] Grochowski M., “Reachable sets for the Heisenberg sub-Lorentzian structure on $\mathbb{R}^3$. An estimate for the distance function”, J. Dyn. Control Syst., 12 (2006), 145–160 | DOI

[12] Grochowski M., “Properties of reachable sets in the sub-Lorentzian geometry”, J. Geom. Phys., 59 (2009), 885–900 | DOI

[13] Grochowski M., “Normal forms and reachable sets for analytic Martinet sub-Lorentzian structures of Hamiltonian type”, J. Dyn. Control Syst., 17 (2011), 49–75 | DOI

[14] Grochowski M., “Reachable sets for contact sub-Lorentzian structures on $\mathbb{R}^3$. Application to control affine systems on $\mathbb{R}^3$ with a scalar input”, J. Math. Sci., 177 (2011), 383–394 | DOI

[15] Grochowski M., “Remarks on global sub-Lorentzian geometry”, Anal. Math. Phys., 3 (2013), 295–309 | DOI

[16] Grochowski M., Medvedev A., Warhurst B., Classification of 3-dimensional contact left-invariant sub-Lorentzian structures, in preparation

[17] Grong E., Vasil'ev A., “Sub-Riemannian and sub-Lorentzian geometry on ${\rm SU}(1,1)$ and on its universal cover”, J. Geom. Mech., 3 (2011), 225–260, arXiv: 0910.0945 | DOI

[18] Hill C. D., Nurowski P., “Differential equations and para-CR structures”, Boll. Unione Mat. Ital., 3 (2010), 25–91, arXiv: 0909.2458

[19] Huang T., Yang X., “Geodesics in the Heisenberg group $H^n$ with a Lorentzian metric”, J. Dyn. Control Syst., 18 (2012), 479–498 | DOI

[20] Korolko A., Markina I., “Nonholonomic Lorentzian geometry on some $\mathbb{H}$-type groups”, J. Geom. Anal., 19 (2009), 864–889, arXiv: 0809.4450 | DOI

[21] Korolko A., Markina I., “Geodesics on $\mathbb{H}$-type quaternion groups with sub-Lorentzian metric and their physical interpretation”, Complex Anal. Oper. Theory, 4 (2010), 589–618, arXiv: 1004.1508 | DOI

[22] Kruglikov B., The D., The gap phenomenon in parabolic geometries, arXiv: 1303.1307

[23] Liu W., Sussman H. J., Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Amer. Math. Soc., 118, 1995, x+104 pp.

[24] Olver P. J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI

[25] Tanaka N., “On differential systems, graded Lie algebras and pseudogroups”, J. Math. Kyoto Univ., 10 (1970), 1–82