@article{SIGMA_2015_11_a3,
author = {Simon N. M. Ruijsenaars},
title = {Hilbert{\textendash}Schmidt {Operators} {vs.~Integrable} {Systems} of {Elliptic} {Calogero{\textendash}Moser} {Type~IV.} {The} {Relativistic} {Heun} (van {Diejen)} {Case}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a3/}
}
TY - JOUR AU - Simon N. M. Ruijsenaars TI - Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type IV. The Relativistic Heun (van Diejen) Case JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a3/ LA - en ID - SIGMA_2015_11_a3 ER -
%0 Journal Article %A Simon N. M. Ruijsenaars %T Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type IV. The Relativistic Heun (van Diejen) Case %J Symmetry, integrability and geometry: methods and applications %D 2015 %V 11 %U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a3/ %G en %F SIGMA_2015_11_a3
Simon N. M. Ruijsenaars. Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type IV. The Relativistic Heun (van Diejen) Case. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a3/
[1] Chalykh O., “Bethe ansatz for the Ruijsenaars model of $BC_1$-type”, SIGMA, 3 (2007), 028, 9 pp., arXiv: math.QA/0702676 | DOI | MR | Zbl
[2] Helffer B., Spectral theory and its applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013 | MR | Zbl
[3] Hörmander L., An introduction to complex analysis in several variables, D. Van Nostrand Co., London, 1966 | MR
[4] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl
[5] Komori Y., Noumi M., Shiraishi J., “Kernel functions for difference operators of Ruijsenaars type and their applications”, SIGMA, 5 (2009), 054, 40 pp., arXiv: 0812.0279 | DOI | MR | Zbl
[6] Kuijlaars A. B. J., McLaughlin K. T.-R., Van Assche W., Vanlessen M., “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188 (2004), 337–398, arXiv: math.CA/0111252 | DOI | MR | Zbl
[7] Rains E., Ruijsenaars S., “Difference operators of Sklyanin and van Diejen type”, Comm. Math. Phys., 320 (2013), 851–889, arXiv: 1203.0042 | DOI | MR | Zbl
[8] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York–London, 1972
[9] Reed M., Simon B., Methods of modern mathematical physics, v. III, Scattering theory, Academic Press, New York–London, 1979 | MR | Zbl
[10] Ruijsenaars S. N. M., J. Math. Phys., 38 (1997), First order analytic difference equations and integrable quantum systems | DOI | MR
[11] Ruijsenaars S. N. M., “A generalized hypergeometric function satisfying four analytic difference equations of Askey–Wilson type”, Comm. Math. Phys., 206 (1999), 639–690 | DOI | MR | Zbl
[12] Ruijsenaars S. N. M., “Generalized Lamé functions. I: The elliptic case”, J. Math. Phys., 40 (1999), 1595–1626 | DOI | MR | Zbl
[13] Ruijsenaars S. N. M., “Relativistic Lamé functions: the special case $g=2$”, J. Phys. A: Math. Gen., 32 (1999), 1737–1772 | DOI | MR | Zbl
[14] Ruijsenaars S. N. M., “Hilbert space theory for reflectionless relativistic potentials”, Publ. Res. Inst. Math. Sci., 36 (2000), 707–753 | DOI | MR | Zbl
[15] Ruijsenaars S. N. M., “Relativistic Lamé functions: completeness vs. polynomial asymptotics”, Indag. Math. (N.S.), 14 (2003), 515–544 | DOI | MR | Zbl
[16] Ruijsenaars S. N. M., “Integrable $BC_N$ analytic difference operators: hidden parameter symmetries and eigenfunctions”, New Trends in Integrability and Partial Solvability, NATO Sci. Ser. II Math. Phys. Chem., 132, Kluwer Acad. Publ., Dordrecht, 2004, 217–261 | DOI | MR | Zbl
[17] Ruijsenaars S. N. M., “Elliptic integrable systems of Calogero–Moser type: some new results on joint eigenfunctions”, Proceedings of the Kyoto 2004 Workshop “Elliptic Integrable Systems”, Rokko Lectures in Math., 18, eds. M. Noumi, K. Takasaki, Kobe University, 2005, 223–240
[18] Ruijsenaars S. N. M., “Isometric reflectionless eigenfunction transforms for higher-order A$\Delta$Os”, J. Nonlinear Math. Phys., 12:1 (2005), 565–598 | DOI | MR
[19] Ruijsenaars S. N. M., “The Hilbert space asymptotics of a class of orthogonal polynomials on a bounded interval”, Theory and Applications of Special Functions, Dev. Math., 13, Springer, New York, 2005, 367–381 | DOI | MR | Zbl
[20] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. I: The eigenfunction identities”, Comm. Math. Phys., 286 (2009), 629–657 | DOI | MR | Zbl
[21] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. II: The $A_{N-1}$ case: first steps”, Comm. Math. Phys., 286 (2009), 659–680 | DOI | MR | Zbl
[22] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. III: The Heun case”, SIGMA, 5 (2009), 049, 21 pp., arXiv: 0904.3250 | DOI | MR | Zbl
[23] Ruijsenaars S. N. M., “On positive Hilbert–Schmidt operators”, Integral Equations Operator Theory, 75 (2013), 393–407 | DOI | MR | Zbl
[24] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[25] Sklyanin E. K., “Some algebraic structures connected with the Yang–Baxter equation”, Funct. Anal. Appl., 16 (1982), 263–270 | DOI | MR
[26] Sklyanin E. K., “Some algebraic structures connected with the Yang–Baxter equation. Representations of a quantum algebra”, Funct. Anal. Appl., 17 (1983), 273–284 | DOI | MR | Zbl
[27] Takasaki K., “Painlevé–Calogero correspondence revisited”, J. Math. Phys., 42 (2001), 1443–1473, arXiv: math.QA/0004118 | DOI | MR | Zbl
[28] Takemura K., “Heun equation and Painlevé equation”, Proceedings of the Kyoto 2004 Workshop “Elliptic Integrable Systems”, Rokko Lectures in Math., 18, eds. M. Noumi, K. Takasaki, Kobe University, 2005, 305–322, arXiv: math.CA/0503288
[29] van de Bult F. J., Rains E. M., Stokman J. V., “Properties of generalized univariate hypergeometric functions”, Comm. Math. Phys., 275 (2007), 37–95, arXiv: math.CA/0607250 | DOI | MR | Zbl
[30] van Diejen J. F., “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35 (1994), 2983–3004 | DOI | MR | Zbl
[31] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[32] Zabrodin A., Zotov A., “Quantum Painlevé–Calogero correspondence for Painlevé VI”, J. Math. Phys., 53 (2012), 073508, 19 pp., arXiv: 1107.5672 | DOI | MR | Zbl