Skein Modules from Skew Howe Duality and Affine Extensions
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that we can release the rigidity of the skew Howe duality process for $\mathfrak{sl}_n$ knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine $\mathfrak{sl}_m$ case, corresponding to looking at tangles embedded in a solid torus. We investigate the relations between the invariants constructed by evaluation representations (and affinization of them) and usual skein modules, and give tools for interpretations of annular skein modules as sub-algebras of intertwiners for particular $U_q(\mathfrak{sl}_n)$ representations. The categorification proposed in a joint work with A. Lauda and D. Rose also admits a direct extension in the affine case.
Mots-clés : skein modules; quantum groups; annulus; affine quantum groups.
@article{SIGMA_2015_11_a29,
     author = {Hoel Queffelec},
     title = {Skein {Modules} from {Skew} {Howe} {Duality} and {Affine} {Extensions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a29/}
}
TY  - JOUR
AU  - Hoel Queffelec
TI  - Skein Modules from Skew Howe Duality and Affine Extensions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a29/
LA  - en
ID  - SIGMA_2015_11_a29
ER  - 
%0 Journal Article
%A Hoel Queffelec
%T Skein Modules from Skew Howe Duality and Affine Extensions
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a29/
%G en
%F SIGMA_2015_11_a29
Hoel Queffelec. Skein Modules from Skew Howe Duality and Affine Extensions. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a29/

[1] Bar-Natan D., “Khovanov's homology for tangles and cobordisms”, Geom. Topol., 9 (2005), 1443–1499, arXiv: math.GT/0410495 | DOI

[2] Blanchet C., “An oriented model for Khovanov homology”, J. Knot Theory Ramifications, 19 (2010), 291–312, arXiv: 1405.7246 | DOI

[3] Carter J. S., Reidemeister/Roseman-type moves to embedded foams in 4-dimensional space, arXiv: 1210.3608

[4] Cautis S., Clasp technology to knot homology via the affine Grassmannian, arXiv: 1207.2074

[5] Cautis S., Kamnitzer J., Licata A., “Categorical geometric skew Howe duality”, Invent. Math., 180 (2010), 111–159, arXiv: 0902.1795 | DOI

[6] Cautis S., Kamnitzer J., Morrison S., Webs and quantum skew Howe duality, arXiv: 1210.6437

[7] Cautis S., Lauda A. D., “Implicit structure in 2-representations of quantum groups”, Selecta Math., 21 (2015), 201–244, arXiv: 1111.1431 | DOI

[8] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1995

[9] Clark D., Morrison S., Walker K., “Fixing the functoriality of Khovanov homology”, Geom. Topol., 13 (2009), 1499–1582, arXiv: math.GT/0701339 | DOI

[10] Cooper B., Krushkal V., “Categorification of the Jones–Wenzl projectors”, Quantum Topol., 3 (2012), 139–180, arXiv: 1005.5117 | DOI

[11] Doty S. R., Green R. M., “Presenting affine $q$-Schur algebras”, Math. Z., 256 (2007), 311–345, arXiv: math.QA/0603002 | DOI

[12] Frenkel I., Stroppel C., Sussan J., “Categorifying fractional Euler characteristics, Jones–Wenzl projectors and $3j$-symbols”, Quantum Topol., 3 (2012), 181–253, arXiv: 1007.4680 | DOI

[13] Grant J., “The moduli problem of Lobb and Zentner and the colored $\mathfrak{sl}(N)$ graph invariant”, J. Knot Theory Ramifications, 22 (2013), 1350060, 16 pp., arXiv: 1212.4511 | DOI

[14] Green R. M., “The affine $q$-Schur algebra”, J. Algebra, 215 (1999), 379–411, arXiv: q-alg/9705015 | DOI

[15] Hong J., Kang S. J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., Providence, RI, 2002

[16] Kamnitzer J., Tingley P., “The crystal commutor and Drinfeld's unitarized $R$-matrix”, J. Algebraic Combin., 29 (2009), 315–335, arXiv: 0707.2248 | DOI

[17] Kauffman L. H., “Invariants of graphs in three-space”, Trans. Amer. Math. Soc., 311 (1989), 697–710 | DOI

[18] Khovanov M., “A categorification of the Jones polynomial”, Duke Math. J., 101 (2000), 359–426, arXiv: math.QA/9908171 | DOI

[19] Khovanov M., “A functor-valued invariant of tangles”, Algebr. Geom. Topol., 2 (2002), 665–741, arXiv: math.QA/0103190 | DOI

[20] Khovanov M., “${\rm sl}(3)$ link homology”, Algebr. Geom. Topol., 4 (2004), 1045–1081, arXiv: math.QA/0304375 | DOI

[21] Khovanov M., Lauda A. D., “A diagrammatic approach to categorification of quantum groups, I”, Represent. Theory, 13 (2009), 309–347, arXiv: 0803.4121 | DOI

[22] Khovanov M., Lauda A. D., “A categorification of quantum ${\rm sl}(n)$”, Quantum Topol., 1 (2010), 1–92, arXiv: 0807.3250 | DOI

[23] Khovanov M., Lauda A. D., “A diagrammatic approach to categorification of quantum groups, II”, Trans. Amer. Math. Soc., 363 (2011), 2685–2700, arXiv: 0804.2080 | DOI

[24] Khovanov M., Lauda A. D., Mackaay M., Stošić M., Extended graphical calculus for categorified quantum ${\rm sl}(2)$, Mem. Amer. Math. Soc., 219, 2012, vi+87 pp., arXiv: 1006.2886 | DOI

[25] Kim D., Graphical calculus on representations of quantum Lie algebras, Ph.D. Thesis, University of California, Davis, 2003

[26] Kuperberg G., “Spiders for rank $2$ Lie algebras”, Comm. Math. Phys., 180 (1996), 109–151, arXiv: q-alg/9712003 | DOI

[27] Lauda A. D., “A categorification of quantum ${\rm sl}(2)$”, Adv. Math., 225 (2010), 3327–3424, arXiv: 0803.3652 | DOI

[28] Lauda A. D., Queffelec H., Rose D. E. V., “Khovanov homology is a skew Howe 2-representation of categorified quantum $\mathfrak{sl}_m$”, Algebr. Geom. Topol. (to appear) , arXiv: 1212.6076

[29] Lusztig G., Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser Boston, Inc., Boston, MA, 1993

[30] Mackaay M., Stošić M., Vaz P., “The $1,2$-coloured HOMFLY-PT link homology”, Trans. Amer. Math. Soc., 363 (2011), 2091–2124, arXiv: 0809.0193 | DOI

[31] Mackaay M., Thiel A. L., Categorifications of the extended affine Hecke algebra and the affine $q$-Schur algebra $S(n,r)$ for $2$, arXiv: 1302.3102

[32] Mazorchuk V., Stroppel C., “A combinatorial approach to functorial quantum $\mathfrak{sl}_k$ knot invariants”, Amer. J. Math., 131 (2009), 1679–1713, arXiv: 0709.1971 | DOI

[33] Morrison S. E., A diagrammatic category for the representation theory of $U_q(\mathfrak{sl}_n)$, Ph.D. Thesis, University of California, Berkeley, 2007

[34] Murakami H., Ohtsuki T., Yamada S., “Homfly polynomial via an invariant of colored plane graphs”, Enseign. Math., 44 (1998), 325–360

[35] Rose D. E. V., “A categorification of quantum $\mathfrak{sl}_3$ projectors and the $\mathfrak{sl}_3$ Reshetikhin–Turaev invariant of tangles”, Quantum Topol., 5 (2014), 1–59, arXiv: 1109.1745 | DOI

[36] Stern E., “Semi-infinite wedges and vertex operators”, Int. Math. Res. Not., 1995:4 (1995), 201–219, arXiv: q-alg/9504013 | DOI

[37] Stroppel C., Sussan J., Categorified Jones–Wenzl projectors: a comparison, arXiv: 1105.3038

[38] Takemura K., Uglov D., “Level-$0$ action of $U_q(\widehat{\mathfrak{sl}}_n)$ on the $q$-deformed Fock spaces”, Comm. Math. Phys., 190 (1998), 549–583, arXiv: q-alg/9607031 | DOI

[39] Uglov D., “Canonical bases of higher-level $q$-deformed Fock spaces and Kazhdan–Lusztig polynomials”, Physical Combinatorics (Kyoto, 1999), Progr. Math., 191, Birkhäuser Boston, Boston, MA, 2000, 249–299, arXiv: math.QA/9905196