@article{SIGMA_2015_11_a29,
author = {Hoel Queffelec},
title = {Skein {Modules} from {Skew} {Howe} {Duality} and {Affine} {Extensions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a29/}
}
Hoel Queffelec. Skein Modules from Skew Howe Duality and Affine Extensions. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a29/
[1] Bar-Natan D., “Khovanov's homology for tangles and cobordisms”, Geom. Topol., 9 (2005), 1443–1499, arXiv: math.GT/0410495 | DOI
[2] Blanchet C., “An oriented model for Khovanov homology”, J. Knot Theory Ramifications, 19 (2010), 291–312, arXiv: 1405.7246 | DOI
[3] Carter J. S., Reidemeister/Roseman-type moves to embedded foams in 4-dimensional space, arXiv: 1210.3608
[4] Cautis S., Clasp technology to knot homology via the affine Grassmannian, arXiv: 1207.2074
[5] Cautis S., Kamnitzer J., Licata A., “Categorical geometric skew Howe duality”, Invent. Math., 180 (2010), 111–159, arXiv: 0902.1795 | DOI
[6] Cautis S., Kamnitzer J., Morrison S., Webs and quantum skew Howe duality, arXiv: 1210.6437
[7] Cautis S., Lauda A. D., “Implicit structure in 2-representations of quantum groups”, Selecta Math., 21 (2015), 201–244, arXiv: 1111.1431 | DOI
[8] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1995
[9] Clark D., Morrison S., Walker K., “Fixing the functoriality of Khovanov homology”, Geom. Topol., 13 (2009), 1499–1582, arXiv: math.GT/0701339 | DOI
[10] Cooper B., Krushkal V., “Categorification of the Jones–Wenzl projectors”, Quantum Topol., 3 (2012), 139–180, arXiv: 1005.5117 | DOI
[11] Doty S. R., Green R. M., “Presenting affine $q$-Schur algebras”, Math. Z., 256 (2007), 311–345, arXiv: math.QA/0603002 | DOI
[12] Frenkel I., Stroppel C., Sussan J., “Categorifying fractional Euler characteristics, Jones–Wenzl projectors and $3j$-symbols”, Quantum Topol., 3 (2012), 181–253, arXiv: 1007.4680 | DOI
[13] Grant J., “The moduli problem of Lobb and Zentner and the colored $\mathfrak{sl}(N)$ graph invariant”, J. Knot Theory Ramifications, 22 (2013), 1350060, 16 pp., arXiv: 1212.4511 | DOI
[14] Green R. M., “The affine $q$-Schur algebra”, J. Algebra, 215 (1999), 379–411, arXiv: q-alg/9705015 | DOI
[15] Hong J., Kang S. J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., Providence, RI, 2002
[16] Kamnitzer J., Tingley P., “The crystal commutor and Drinfeld's unitarized $R$-matrix”, J. Algebraic Combin., 29 (2009), 315–335, arXiv: 0707.2248 | DOI
[17] Kauffman L. H., “Invariants of graphs in three-space”, Trans. Amer. Math. Soc., 311 (1989), 697–710 | DOI
[18] Khovanov M., “A categorification of the Jones polynomial”, Duke Math. J., 101 (2000), 359–426, arXiv: math.QA/9908171 | DOI
[19] Khovanov M., “A functor-valued invariant of tangles”, Algebr. Geom. Topol., 2 (2002), 665–741, arXiv: math.QA/0103190 | DOI
[20] Khovanov M., “${\rm sl}(3)$ link homology”, Algebr. Geom. Topol., 4 (2004), 1045–1081, arXiv: math.QA/0304375 | DOI
[21] Khovanov M., Lauda A. D., “A diagrammatic approach to categorification of quantum groups, I”, Represent. Theory, 13 (2009), 309–347, arXiv: 0803.4121 | DOI
[22] Khovanov M., Lauda A. D., “A categorification of quantum ${\rm sl}(n)$”, Quantum Topol., 1 (2010), 1–92, arXiv: 0807.3250 | DOI
[23] Khovanov M., Lauda A. D., “A diagrammatic approach to categorification of quantum groups, II”, Trans. Amer. Math. Soc., 363 (2011), 2685–2700, arXiv: 0804.2080 | DOI
[24] Khovanov M., Lauda A. D., Mackaay M., Stošić M., Extended graphical calculus for categorified quantum ${\rm sl}(2)$, Mem. Amer. Math. Soc., 219, 2012, vi+87 pp., arXiv: 1006.2886 | DOI
[25] Kim D., Graphical calculus on representations of quantum Lie algebras, Ph.D. Thesis, University of California, Davis, 2003
[26] Kuperberg G., “Spiders for rank $2$ Lie algebras”, Comm. Math. Phys., 180 (1996), 109–151, arXiv: q-alg/9712003 | DOI
[27] Lauda A. D., “A categorification of quantum ${\rm sl}(2)$”, Adv. Math., 225 (2010), 3327–3424, arXiv: 0803.3652 | DOI
[28] Lauda A. D., Queffelec H., Rose D. E. V., “Khovanov homology is a skew Howe 2-representation of categorified quantum $\mathfrak{sl}_m$”, Algebr. Geom. Topol. (to appear) , arXiv: 1212.6076
[29] Lusztig G., Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser Boston, Inc., Boston, MA, 1993
[30] Mackaay M., Stošić M., Vaz P., “The $1,2$-coloured HOMFLY-PT link homology”, Trans. Amer. Math. Soc., 363 (2011), 2091–2124, arXiv: 0809.0193 | DOI
[31] Mackaay M., Thiel A. L., Categorifications of the extended affine Hecke algebra and the affine $q$-Schur algebra $S(n,r)$ for $2$, arXiv: 1302.3102
[32] Mazorchuk V., Stroppel C., “A combinatorial approach to functorial quantum $\mathfrak{sl}_k$ knot invariants”, Amer. J. Math., 131 (2009), 1679–1713, arXiv: 0709.1971 | DOI
[33] Morrison S. E., A diagrammatic category for the representation theory of $U_q(\mathfrak{sl}_n)$, Ph.D. Thesis, University of California, Berkeley, 2007
[34] Murakami H., Ohtsuki T., Yamada S., “Homfly polynomial via an invariant of colored plane graphs”, Enseign. Math., 44 (1998), 325–360
[35] Rose D. E. V., “A categorification of quantum $\mathfrak{sl}_3$ projectors and the $\mathfrak{sl}_3$ Reshetikhin–Turaev invariant of tangles”, Quantum Topol., 5 (2014), 1–59, arXiv: 1109.1745 | DOI
[36] Stern E., “Semi-infinite wedges and vertex operators”, Int. Math. Res. Not., 1995:4 (1995), 201–219, arXiv: q-alg/9504013 | DOI
[37] Stroppel C., Sussan J., Categorified Jones–Wenzl projectors: a comparison, arXiv: 1105.3038
[38] Takemura K., Uglov D., “Level-$0$ action of $U_q(\widehat{\mathfrak{sl}}_n)$ on the $q$-deformed Fock spaces”, Comm. Math. Phys., 190 (1998), 549–583, arXiv: q-alg/9607031 | DOI
[39] Uglov D., “Canonical bases of higher-level $q$-deformed Fock spaces and Kazhdan–Lusztig polynomials”, Physical Combinatorics (Kyoto, 1999), Progr. Math., 191, Birkhäuser Boston, Boston, MA, 2000, 249–299, arXiv: math.QA/9905196