An Integrability Condition for Simple Lie Groups II
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that a simple Lie group $G$ ($ \neq {\rm SL}_2$) can be locally characterised by an integrability condition on an $\operatorname{Aut}(\mathfrak{g})$ structure on the tangent bundle, where $\operatorname{Aut}(\mathfrak{g})$ is the automorphism group of the Lie algebra of $G$. The integrability condition is the vanishing of a torsion tensor of type $(1,2)$. This is a slight improvement of an earlier result proved in [Min-Oo M., Ruh E. A., in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205–211].
Keywords: simple Lie groups and algebras; $G$-structure.
@article{SIGMA_2015_11_a26,
     author = {Maung Min-Oo},
     title = {An {Integrability} {Condition} for {Simple} {Lie} {Groups~II}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a26/}
}
TY  - JOUR
AU  - Maung Min-Oo
TI  - An Integrability Condition for Simple Lie Groups II
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a26/
LA  - en
ID  - SIGMA_2015_11_a26
ER  - 
%0 Journal Article
%A Maung Min-Oo
%T An Integrability Condition for Simple Lie Groups II
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a26/
%G en
%F SIGMA_2015_11_a26
Maung Min-Oo. An Integrability Condition for Simple Lie Groups II. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a26/

[1] Berger M., “Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes”, Bull. Soc. Math. France, 83 (1955), 279–330

[2] Jacobson N., Lie algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers, New York–London, 1962

[3] Min-Oo M., Ruh E. A., “An integrability condition for simple Lie groups”, Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205–211 | DOI

[4] Min-Oo M., “Almost symmetric spaces”, Astérisque, 163–164, 1988, 221–246

[5] Simons J., “On the transitivity of holonomy systems”, Ann. of Math., 76 (1962), 213–234 | DOI

[6] Sternberg S., Lectures on differential geometry, 2nd ed., Chelsea Publishing Co., New York, 1983