On the $q$-Charlier Multiple Orthogonal Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a new family of special functions, namely $q$-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to $q$-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a $q$-analogue of the second of Appell's hypergeometric functions is given. A high-order linear $q$-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula.
Mots-clés : multiple orthogonal polynomials; Hermite–Padé approximation; difference equations; classical orthogonal polynomials of a discrete variable; Charlier polynomials; $q$-polynomials.
@article{SIGMA_2015_11_a25,
     author = {Jorge Arves\'u and Andys M. Ram{\'\i}rez-Aberasturis},
     title = {On the $q${-Charlier} {Multiple} {Orthogonal} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a25/}
}
TY  - JOUR
AU  - Jorge Arvesú
AU  - Andys M. Ramírez-Aberasturis
TI  - On the $q$-Charlier Multiple Orthogonal Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a25/
LA  - en
ID  - SIGMA_2015_11_a25
ER  - 
%0 Journal Article
%A Jorge Arvesú
%A Andys M. Ramírez-Aberasturis
%T On the $q$-Charlier Multiple Orthogonal Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a25/
%G en
%F SIGMA_2015_11_a25
Jorge Arvesú; Andys M. Ramírez-Aberasturis. On the $q$-Charlier Multiple Orthogonal Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a25/

[1] Álvarez-Nodarse R., Arvesú J., “On the $q$-polynomials in the exponential lattice $x(s)=c_1q^s+c_3$”, Integral Transform. Spec. Funct., 8 (1999), 299–324 | DOI

[2] Aptekarev A., Arvesú J., “Asymptotics for multiple Meixner polynomials”, J. Math. Anal. Appl., 411 (2014), 485–505, arXiv: 1207.0463 | DOI

[3] Arvesú J., “On some properties of $q$-Hahn multiple orthogonal polynomials”, J. Comput. Appl. Math., 233 (2010), 1462–1469 | DOI

[4] Arvesú J., Coussement J., Van Assche W., “Some discrete multiple orthogonal polynomials”, J. Comput. Appl. Math., 153 (2003), 19–45 | DOI

[5] Arvesú J., Esposito C., “A high-order $q$-difference equation for $q$-Hahn multiple orthogonal polynomials”, J. Difference Equ. Appl., 18 (2012), 833–847, arXiv: 0910.4041 | DOI

[6] Borodin A., Ferrari P. L., Sasamoto T., “Two speed TASEP”, J. Stat. Phys., 137 (2009), 936–977, arXiv: 0904.4655 | DOI

[7] Daems E., Kuijlaars A. B. J., “A Christoffel–Darboux formula for multiple orthogonal polynomials”, J. Approx. Theory, 130 (2004), 190–202, arXiv: math.CA/0402031 | DOI

[8] Ernst T., “On the $q$-analogues of Srivastava's triple hypergeometric functions”, Axioms, 2 (2013), 85–99 | DOI

[9] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI

[10] Haneczok M., Van Assche W., “Interlacing properties of zeros of multiple orthogonal polynomials”, J. Math. Anal. Appl., 389 (2012), 429–438, arXiv: 1108.3917 | DOI

[11] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI

[12] Lee D. W., “Difference equations for discrete classical multiple orthogonal polynomials”, J. Approx. Theory, 150 (2008), 132–152 | DOI

[13] Miki H., Vinet L., Zhedanov A., “Non-Hermitian oscillator Hamiltonians and multiple Charlier polynomials”, Phys. Lett. A, 376 (2011), 65–69 | DOI

[14] Ndayiragije F., Van Assche W., “Asymptotics for the ratio and the zeros of multiple Charlier polynomials”, J. Approx. Theory, 164 (2012), 823–840, arXiv: 1108.3918 | DOI

[15] Nikiforov A. F., Suslov S. K., Uvarov V. B., Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991 | DOI

[16] Nikishin E. M., Sorokin V. N., Rational approximations and orthogonality, Translations of Mathematical Monographs, 92, Amer. Math. Soc., Providence, RI, 1991

[17] Postelmans K., Van Assche W., “Multiple little $q$-Jacobi polynomials”, J. Comput. Appl. Math., 178 (2005), 361–375, arXiv: math.CA/0403532 | DOI

[18] Prévost M., Rivoal T., “Remainder Padé approximants for the exponential function”, Constr. Approx., 25 (2007), 109–123 | DOI

[19] Van Assche W., “Difference equations for multiple Charlier and Meixner polynomials”, Proceedings of the Sixth International Conference on Difference Equations, CRC, Boca Raton, FL, 2004, 549–557

[20] Van Assche W., “Nearest neighbor recurrence relations for multiple orthogonal polynomials”, J. Approx. Theory, 163 (2011), 1427–1448, arXiv: 1104.3778 | DOI