Metaplectic-c Quantomorphisms
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the classical Kostant–Souriau prequantization procedure, the Poisson algebra of a symplectic manifold $(M,\omega)$ is realized as the space of infinitesimal quantomorphisms of the prequantization circle bundle. Robinson and Rawnsley developed an alternative to the Kostant–Souriau quantization process in which the prequantization circle bundle and metaplectic structure for $(M,\omega)$ are replaced by a metaplectic-c prequantization. They proved that metaplectic-c quantization can be applied to a larger class of manifolds than the classical recipe. This paper presents a definition for a metaplectic-c quantomorphism, which is a diffeomorphism of metaplectic-c prequantizations that preserves all of their structures. Since the structure of a metaplectic-c prequantization is more complicated than that of a circle bundle, we find that the definition must include an extra condition that does not have an analogue in the Kostant–Souriau case. We then define an infinitesimal quantomorphism to be a vector field whose flow consists of metaplectic-c quantomorphisms, and prove that the space of infinitesimal metaplectic-c quantomorphisms exhibits all of the same properties that are seen for the infinitesimal quantomorphisms of a prequantization circle bundle. In particular, this space is isomorphic to the Poisson algebra $C^\infty(M)$.
Keywords: geometric quantization; metaplectic-c prequantization; quantomorphism.
@article{SIGMA_2015_11_a24,
     author = {Jennifer Vaughan},
     title = {Metaplectic-c {Quantomorphisms}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a24/}
}
TY  - JOUR
AU  - Jennifer Vaughan
TI  - Metaplectic-c Quantomorphisms
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a24/
LA  - en
ID  - SIGMA_2015_11_a24
ER  - 
%0 Journal Article
%A Jennifer Vaughan
%T Metaplectic-c Quantomorphisms
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a24/
%G en
%F SIGMA_2015_11_a24
Jennifer Vaughan. Metaplectic-c Quantomorphisms. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a24/

[1] Dirac P. A. M., “The fundamental equations of quantum mechanics”, Proc. Roy. Soc. London Ser. A, 109 (1925), 642–653 | DOI

[2] Kostant B., “Quantization and unitary representations. I: Prequantization”, Lectures in Modern Analysis and Applications III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 87–208 | DOI

[3] Robinson P. L., Rawnsley J. H., The metaplectic representation, ${\rm Mp}_c$ structures and geometric quantization, Mem. Amer. Math. Soc., 81, no. 410, 1989, iv+92 pp. | DOI

[4] Śniatycki J., Geometric quantization and quantum mechanics, Applied Mathematical Sciences, 30, Springer-Verlag, New York–Berlin, 1980 | DOI

[5] Souriau J. M., Structure of dynamical systems. A symplectic view of physics, Progress in Mathematics, 149, Birkhäuser Boston, Inc., Boston, MA, 1997 | DOI

[6] Woodhouse N. M. J., Geometric quantization, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1992