@article{SIGMA_2015_11_a23,
author = {Dylan Rupel},
title = {The {Feigin} {Tetrahedron}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a23/}
}
Dylan Rupel. The Feigin Tetrahedron. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a23/
[1] Benkart G., Kang S., Oh S., Park E., Construction of irreducible representations over Khovanov–Lauda–Rouquier algebras of finite classical type, arXiv: 1108.1048
[2] Berenstein A., Group-like elements in quantum groups and Feigin's conjecture, arXiv: q-alg/9605016
[3] Berenstein A., Rupel D., “Quantum cluster characters of Hall algebras”, Selecta Math. (to appear) , arXiv: 1308.2992 | DOI
[4] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195 (2005), 405–455, arXiv: math.QA/0404446 | DOI
[5] Chen X., Xiao J., “Exceptional sequences in Hall algebras and quantum groups”, Compositio Math., 117 (1999), 161–187 | DOI
[6] Chriss N., Ginzburg V., Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997
[7] Green J. A., “Hall algebras, hereditary algebras and quantum groups”, Invent. Math., 120 (1995), 361–377 | DOI
[8] Hausel T., Rodriguez-Villegas F., “Mixed Hodge polynomials of character varieties”, Invent. Math., 174 (2008), 555–624, arXiv: math.AG/0612668 | DOI
[9] Hernandez D., Leclerc B., “Quantum Grothendieck rings and derived Hall algebras”, J. Reine Angew. Math. (to appear) , arXiv: 1109.0862 | DOI
[10] Iohara K., Malikov F., “Rings of skew polynomials and Gel'fand–Kirillov conjecture for quantum groups”, Comm. Math. Phys., 164 (1994), 217–237, arXiv: hep-th/9306138 | DOI
[11] Jiang Y., Sheng J., Xiao J., “The elements in crystal bases corresponding to exceptional modules”, Chin. Ann. Math. Ser. B, 31 (2010), 1–20, arXiv: 0902.1216 | DOI
[12] Joseph A., “Sur une conjecture de Feigin”, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1441–1444
[13] Kang S., Kashiwara M., Kim M., Symmetric quiver Hecke algebras and $R$-matrices of quantum affine algebras, II, arXiv: 1308.0651
[14] Khovanov M., Lauda A. D., “A diagrammatic approach to categorification of quantum groups, I”, Represent. Theory, 13 (2009), 309–347, arXiv: 0803.4121 | DOI
[15] Khovanov M., Lauda A. D., “A diagrammatic approach to categorification of quantum groups, II”, Trans. Amer. Math. Soc., 363 (2011), 2685–2700, arXiv: 0804.2080 | DOI
[16] Kimura Y., Qin F., “Graded quiver varieties, quantum cluster algebras and dual canonical basis”, Adv. Math., 262 (2014), 261–312, arXiv: 1205.2066 | DOI
[17] Kleshchev A., “Cuspidal systems for affine Khovanov–Lauda–Rouquier algebras”, Math. Z., 276 (2014), 691–726, arXiv: 1210.6556 | DOI
[18] Kleshchev A., Ram A., “Homogeneous representations of Khovanov–Lauda algebras”, J. Eur. Math. Soc., 12 (2010), 1293–1306, arXiv: 0809.0557 | DOI
[19] Kleshchev A., Ram A., “Representations of Khovanov–Lauda–Rouquier algebras and combinatorics of Lyndon words”, Math. Ann., 349 (2011), 943–975, arXiv: 0909.1984 | DOI
[20] Lampe P., “A quantum cluster algebra of Kronecker type and the dual canonical basis”, Int. Math. Res. Not., 2011 (2011), 2970–3005, arXiv: 1002.2762 | DOI
[21] Lampe P., “Quantum cluster algebras of type $A$ and the dual canonical basis”, Proc. Lond. Math. Soc., 108 (2014), 1–43, arXiv: 1101.0580 | DOI
[22] Lauda A. D., Vazirani M., “Crystals from categorified quantum groups”, Adv. Math., 228 (2011), 803–861, arXiv: 0909.1810 | DOI
[23] Leclerc B., “Dual canonical bases, quantum shuffles and $q$-characters”, Math. Z., 246 (2004), 691–732, arXiv: math.QA/0209133 | DOI
[24] Lusztig G., “Quivers, perverse sheaves, and quantized enveloping algebras”, J. Amer. Math. Soc., 4 (1991), 365–421 | DOI
[25] Lusztig G., Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser Boston, Inc., Boston, MA, 1993
[26] Lusztig G., “Problems on canonical bases”, Algebraic Groups and their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Amer. Math. Soc., Providence, RI, 1994, 169–176 | DOI
[27] McNamara P. J., Finite dimensional representations of Khovanov–Lauda–Rouquier algebras. I: Finite type, arXiv: 1207.5860
[28] Qin F., “Quantum cluster variables via Serre polynomials”, J. Reine Angew. Math., 668 (2012), 149–190, arXiv: 1004.4171 | DOI
[29] Ringel C. M., “Hall algebras and quantum groups”, Invent. Math., 101 (1990), 583–591 | DOI
[30] Ringel C. M., “Hall algebras revisited”, Quantum Deformations of Algebras and their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat Gan, 1993, 171–176
[31] Rosso M., “Quantum groups and quantum shuffles”, Invent. Math., 133 (1998), 399–416 | DOI
[32] Rouquier R., 2-Kac–Moody algebras, arXiv: 0812.5023
[33] Rouquier R. \, “Quiver Hecke algebras and 2-Lie algebras”, Algebra Colloq., 19 (2012), 359–410, arXiv: 1112.3619 | DOI
[34] Rupel D., “On a quantum analog of the Caldero–Chapoton formula”, Int. Math. Res. Not., 2011 (2011), 3207–3236 | DOI
[35] Rupel D., Quantum cluster characters of valued quivers, arXiv: 1109.6694
[36] Toën B., “Derived Hall algebras”, Duke Math. J., 135 (2006), 587–615, arXiv: math.QA/0501343 | DOI
[37] Varagnolo M., Vasserot E., “Canonical bases and KLR-algebras”, J. Reine Angew. Math., 659 (2011), 67–100, arXiv: math.RT/0107177 | DOI
[38] Webster B., Weighted Khovanov–Lauda–Rouquier algebras, arXiv: 1209.2463