Dynamics on Networks of Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a precise definition of a continuous time dynamical system made up of interacting open subsystems. The interconnections of subsystems are coded by directed graphs. We prove that the appropriate maps of graphs called graph fibrations give rise to maps of dynamical systems. Consequently surjective graph fibrations give rise to invariant subsystems and injective graph fibrations give rise to projections of dynamical systems.
Keywords: coupled cell networks; open dynamical systems; control systems; morphisms of dynamical systems.
@article{SIGMA_2015_11_a21,
     author = {Lee Deville and Eugene Lerman},
     title = {Dynamics on {Networks} of {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a21/}
}
TY  - JOUR
AU  - Lee Deville
AU  - Eugene Lerman
TI  - Dynamics on Networks of Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a21/
LA  - en
ID  - SIGMA_2015_11_a21
ER  - 
%0 Journal Article
%A Lee Deville
%A Eugene Lerman
%T Dynamics on Networks of Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a21/
%G en
%F SIGMA_2015_11_a21
Lee Deville; Eugene Lerman. Dynamics on Networks of Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a21/

[1] Awodey S., Category theory, Oxford Logic Guides, 49, Oxford University Press, New York, 2006 | DOI

[2] Boldi P., Vigna S., “Fibrations of graphs”, Discrete Math., 243 (2002), 21–66 | DOI

[3] Brockett R. W., “Control theory and analytical mechanics”, Lie Groups: History, Frontiers and Appl., The 1976 Ames Research Center (NASA) Conference on Geometric Control Theory (Moffett Field, Calif., 1976), v. 7, Math. Sci. Press, Brookline, Mass., 1977, 1–48

[4] DeVille L., Lerman E., Dynamics on networks. I: Combinatorial categories of modular continuous-time systems, arXiv: 1008.5359

[5] DeVille L., Lerman E., “Modular dynamical systems on networks”, J. Eur. Math. Soc. (to appear) , arXiv: 1303.3907

[6] Field M., “Combinatorial dynamics”, Dyn. Syst., 19 (2004), 217–243 | DOI

[7] Golubitsky M., Stewart I., Török A., “Patterns of synchrony in coupled cell networks with multiple arrows”, SIAM J. Appl. Dyn. Syst., 4 (2005), 78–100 | DOI

[8] Stewart I., Golubitsky M., Pivato M., “Symmetry groupoids and patterns of synchrony in coupled cell networks”, SIAM J. Appl. Dyn. Syst., 2 (2003), 609–646 | DOI

[9] Tabuada P., Pappas G. J., “Quotients of fully nonlinear control systems”, SIAM J. Control Optim., 43 (2005), 1844–1866 | DOI

[10] Vagner D., Spivak D. I., Lerman E., Algebras of open dynamical systems on the operad of wiring diagrams, arXiv: 1408.1598

[11] Vigna S., The graph-fibrations home page, http://vigna.di.unimi.it/fibrations/

[12] Willems J. C., “On interconnections, control, and feedback”, IEEE Trans. Automat. Control, 42 (1997), 326–339 | DOI