Schur Superpolynomials: Combinatorial Definition and Pieri Rule
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Schur superpolynomials have been introduced recently as limiting cases of the Macdonald superpolynomials. It turns out that there are two natural super-extensions of the Schur polynomials: in the limit $q=t=0$ and $q=t\rightarrow\infty$, corresponding respectively to the Schur superpolynomials and their dual. However, a direct definition is missing. Here, we present a conjectural combinatorial definition for both of them, each being formulated in terms of a distinct extension of semi-standard tableaux. These two formulations are linked by another conjectural result, the Pieri rule for the Schur superpolynomials. Indeed, and this is an interesting novelty of the super case, the successive insertions of rows governed by this Pieri rule do not generate the tableaux underlying the Schur superpolynomials combinatorial construction, but rather those pertaining to their dual versions. As an aside, we present various extensions of the Schur bilinear identity.
Keywords: symmetric superpolynomials; Schur functions; super tableaux; Pieri rule.
@article{SIGMA_2015_11_a20,
     author = {Olivier Blondeau-Fournier and Pierre Mathieu},
     title = {Schur {Superpolynomials:} {Combinatorial} {Definition} and {Pieri} {Rule}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a20/}
}
TY  - JOUR
AU  - Olivier Blondeau-Fournier
AU  - Pierre Mathieu
TI  - Schur Superpolynomials: Combinatorial Definition and Pieri Rule
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a20/
LA  - en
ID  - SIGMA_2015_11_a20
ER  - 
%0 Journal Article
%A Olivier Blondeau-Fournier
%A Pierre Mathieu
%T Schur Superpolynomials: Combinatorial Definition and Pieri Rule
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a20/
%G en
%F SIGMA_2015_11_a20
Olivier Blondeau-Fournier; Pierre Mathieu. Schur Superpolynomials: Combinatorial Definition and Pieri Rule. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a20/

[1] Blondeau-Fournier O., Desrosiers P., Lapointe L., Mathieu P., “Macdonald polynomials in superspace as eigenfunctions of commuting operators”, J. Comb., 3 (2012), 495–561, arXiv: 1202.3922 | DOI

[2] Blondeau-Fournier O., Desrosiers P., Lapointe L., Mathieu P., “Macdonald polynomials in superspace: conjectural definition and positivity conjectures”, Lett. Math. Phys., 101 (2012), 27–47, arXiv: 1112.5188 | DOI

[3] Blondeau-Fournier O., Desrosiers P., Mathieu P., The supersymmetric Ruijsenaars–Schneider model, arXiv: 1403.4667

[4] Bressoud D. M., Proofs and confirmations. The story of the alternating sign matrix conjecture, MAA Spectrum, Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 1999

[5] Desrosiers P., Lapointe L., Mathieu P., “Supersymmetric Calogero–Moser–Sutherland models and Jack superpolynomials”, Nuclear Phys. B, 606 (2001), 547–582, arXiv: hep-th/0103178 | DOI

[6] Desrosiers P., Lapointe L., Mathieu P., “Jack polynomials in superspace”, Comm. Math. Phys., 242 (2003), 331–360, arXiv: hep-th/0209074 | DOI

[7] Desrosiers P., Lapointe L., Mathieu P., “Classical symmetric functions in superspace”, J. Algebraic Combin., 24 (2006), 209–238, arXiv: math.CO/0509408 | DOI

[8] Desrosiers P., Lapointe L., Mathieu P., “Evaluation and normalization of Jack superpolynomials”, Int. Math. Res. Not., 2012 (2012), 5267–5327, arXiv: 1104.3260 | DOI

[9] Fu A. M., Lascoux A., “Non-symmetric Cauchy kernels for the classical groups”, J. Combin. Theory Ser. A, 116 (2009), 903–917, arXiv: math.CO/0612828 | DOI

[10] Haiman M., “Hilbert schemes, polygraphs and the Macdonald positivity conjecture”, J. Amer. Math. Soc., 14 (2001), 941–1006, arXiv: math.AG/0010246 | DOI

[11] Ion B., “Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials”, J. Algebra, 319 (2008), 3480–3517, arXiv: math.QA/0406060 | DOI

[12] Kirillov A. N., “Completeness of states of the generalized Heisenberg magnet”, J. Sov. Math., 36 (1987), 115–128 | DOI

[13] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995

[14] Sagan B. E., The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, 2nd ed., Springer-Verlag, New York, 2001 | DOI