@article{SIGMA_2015_11_a20,
author = {Olivier Blondeau-Fournier and Pierre Mathieu},
title = {Schur {Superpolynomials:} {Combinatorial} {Definition} and {Pieri} {Rule}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a20/}
}
TY - JOUR AU - Olivier Blondeau-Fournier AU - Pierre Mathieu TI - Schur Superpolynomials: Combinatorial Definition and Pieri Rule JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a20/ LA - en ID - SIGMA_2015_11_a20 ER -
Olivier Blondeau-Fournier; Pierre Mathieu. Schur Superpolynomials: Combinatorial Definition and Pieri Rule. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a20/
[1] Blondeau-Fournier O., Desrosiers P., Lapointe L., Mathieu P., “Macdonald polynomials in superspace as eigenfunctions of commuting operators”, J. Comb., 3 (2012), 495–561, arXiv: 1202.3922 | DOI
[2] Blondeau-Fournier O., Desrosiers P., Lapointe L., Mathieu P., “Macdonald polynomials in superspace: conjectural definition and positivity conjectures”, Lett. Math. Phys., 101 (2012), 27–47, arXiv: 1112.5188 | DOI
[3] Blondeau-Fournier O., Desrosiers P., Mathieu P., The supersymmetric Ruijsenaars–Schneider model, arXiv: 1403.4667
[4] Bressoud D. M., Proofs and confirmations. The story of the alternating sign matrix conjecture, MAA Spectrum, Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 1999
[5] Desrosiers P., Lapointe L., Mathieu P., “Supersymmetric Calogero–Moser–Sutherland models and Jack superpolynomials”, Nuclear Phys. B, 606 (2001), 547–582, arXiv: hep-th/0103178 | DOI
[6] Desrosiers P., Lapointe L., Mathieu P., “Jack polynomials in superspace”, Comm. Math. Phys., 242 (2003), 331–360, arXiv: hep-th/0209074 | DOI
[7] Desrosiers P., Lapointe L., Mathieu P., “Classical symmetric functions in superspace”, J. Algebraic Combin., 24 (2006), 209–238, arXiv: math.CO/0509408 | DOI
[8] Desrosiers P., Lapointe L., Mathieu P., “Evaluation and normalization of Jack superpolynomials”, Int. Math. Res. Not., 2012 (2012), 5267–5327, arXiv: 1104.3260 | DOI
[9] Fu A. M., Lascoux A., “Non-symmetric Cauchy kernels for the classical groups”, J. Combin. Theory Ser. A, 116 (2009), 903–917, arXiv: math.CO/0612828 | DOI
[10] Haiman M., “Hilbert schemes, polygraphs and the Macdonald positivity conjecture”, J. Amer. Math. Soc., 14 (2001), 941–1006, arXiv: math.AG/0010246 | DOI
[11] Ion B., “Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials”, J. Algebra, 319 (2008), 3480–3517, arXiv: math.QA/0406060 | DOI
[12] Kirillov A. N., “Completeness of states of the generalized Heisenberg magnet”, J. Sov. Math., 36 (1987), 115–128 | DOI
[13] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995
[14] Sagan B. E., The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, 2nd ed., Springer-Verlag, New York, 2001 | DOI