@article{SIGMA_2015_11_a2,
author = {Thomas Dreyfus and Julien Roques},
title = {Galois {Groups} of {Difference} {Equations} of {Order} {Two} on {Elliptic} {Curves}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a2/}
}
Thomas Dreyfus; Julien Roques. Galois Groups of Difference Equations of Order Two on Elliptic Curves. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a2/
[1] André Y., “Différentielles non commutatives et théorie de Galois différentielle ou aux différences”, Ann. Sci. École Norm. Sup. (4), 34 (2001), 685–739, arXiv: math.GM/0203274 | DOI | MR | Zbl
[2] Baker A., Transcendental number theory, Cambridge Mathematical Library, 2nd ed., Cambridge University Press, Cambridge, 1990 | MR
[3] Bertrand D., Masser D., “Linear forms in elliptic integrals”, Invent. Math., 58 (1980), 283–288 | DOI | MR | Zbl
[4] Bugeaud V., Groupe de Galois local des équations aux $q$-différences irrégulières, Ph. D. Thesis,, Institut de Mathématiques de Toulouse, 2012
[5] Casale G., Roques J., “Dynamics of rational symplectic mappings and difference Galois theory”, Int. Math. Res. Not., 2008 (2008), 103, 23 pp., arXiv: 0803.3951 | DOI | MR
[6] Casale G., Roques J., “Non-integrability by discrete quadratures”, J. Reine Angew. Math., 687 (2014), 87–112 | DOI | MR | Zbl
[7] Chatzidakis Z., Hardouin C., Singer M. F., “On the definitions of difference Galois groups”, Model Theory with Applications to Algebra and Analysis, v. 1, London Math. Soc. Lecture Note Ser., 349, Cambridge University Press, Cambridge, 2008, 73–109, arXiv: 0705.2975 | DOI | MR | Zbl
[8] Di Vizio L., “Arithmetic theory of $q$-difference equations: the $q$-analogue of Grothendieck–Katz's conjecture on $p$-curvatures”, Invent. Math., 150 (2002), 517–578, arXiv: math.NT/0104178 | DOI | MR | Zbl
[9] Di Vizio L., Hardouin C., “Courbures, groupes de Galois génériques et $D$-groupoïde de Galois d'un système aux $q$-différences”, C. R. Math. Acad. Sci. Paris, 348 (2010), 951–954 | DOI | MR | Zbl
[10] Etingof P. I., “Galois groups and connection matrices of $q$-difference equations”, Electron. Res. Announc. Amer. Math. Soc., 1 (1995), 1–9 | DOI | MR | Zbl
[11] Franke C. H., “Picard–Vessiot theory of linear homogeneous difference equations”, Trans. Amer. Math. Soc., 108 (1963), 491–515 | DOI | MR | Zbl
[12] Franke C. H., “Solvability of linear homogeneous difference equations by elementary operations”, Proc. Amer. Math. Soc., 17 (1966), 240–246 | DOI | MR | Zbl
[13] Franke C. H., “A note on the Galois theory of linear homogeneous difference equations”, Proc. Amer. Math. Soc., 18 (1967), 548–551 | DOI | MR | Zbl
[14] Franke C. H., “A characterization of linear difference equations which are solvable by elementary operations”, Aequationes Math., 10 (1974), 97–104 | DOI | MR | Zbl
[15] Hardouin C., Singer M. F., “Differential Galois theory of linear difference equations”, Math. Ann., 342 (2008), 333–377, arXiv: 0801.1493 | DOI | MR | Zbl
[16] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR | Zbl
[17] Helmer O., “Divisibility properties of integral functions”, Duke Math. J., 6 (1940), 345–356 | DOI | MR
[18] Hendriks P. A., “An algorithm for computing a standard form for second-order linear $q$-difference equations”, J. Pure Appl. Algebra, 117/118 (1997), 331–352 | DOI | MR | Zbl
[19] Hendriks P. A., “An algorithm determining the difference Galois group of second order linear difference equations”, J. Symbolic Comput., 26 (1998), 445–461 | DOI | MR | Zbl
[20] Lang S., “On quasi algebraic closure”, Ann. of Math., 55 (1952), 373–390 | DOI | MR | Zbl
[21] Masser D., Elliptic functions and transcendence, Lecture Notes in Math., 437, Springer-Verlag, Berlin–New York, 1975 | DOI | MR | Zbl
[22] Mumford D., Tata lectures on theta, v. I, Progress in Mathematics, 28, Birkhäuser Boston, Inc., Boston, MA, 1983 | DOI | MR | Zbl
[23] Nguyen K. A., van der Put M., Top J., “Algebraic subgroups of $\mathrm{GL}_2(\mathbb{C})$”, Indag. Math. (N.S.), 19 (2008), 287–297 | DOI | MR | Zbl
[24] Nguyen P., “Hypertranscedance de fonctions de Mahler du premier ordre”, C. R. Math. Acad. Sci. Paris, 349 (2011), 943–946 | DOI | MR | Zbl
[25] Ovchinnikov A., Wibmer M., “$\sigma$-Galois theory of linear difference equations”, Int. Math. Res. Not. (to appear) , arXiv: 1304.2649 | DOI
[26] Ramis J.-P., Sauloy J., “The $q$-analogue of the wild fundamental group, I”, Algebraic, Analytic and Geometric Aspects of Complex Differential Equations and their Deformations. Painlevé Hierarchies, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, 167–193, arXiv: math.QA/0611521 | MR
[27] Ramis J.-P., Sauloy J., “The $q$-analogue of the wild fundamental group, II”, Astérisque, 2009, 301–324, arXiv: 0711.4034 | MR | Zbl
[28] Ramis J.-P., Sauloy J., “The $q$-analogue of the wild fundamental group and the inverse problem of the galois theory of $q$-difference equations”, Ann. Sci. École Norm. Sup. (to appear) , arXiv: 1207.0107 | MR
[29] Roques J., “Galois groups of the basic hypergeometric equations”, Pacific J. Math., 235 (2008), 303–322 | DOI | MR | Zbl
[30] Sauloy J., “Galois theory of Fuchsian $q$-difference equations”, Ann. Sci. École Norm. Sup., 36 (2003), 925–968, arXiv: math.QA/0210221 | DOI | MR | Zbl
[31] Schneider T., “Arithmetische Untersuchungen elliptischer Integrale”, Math. Ann., 113 (1936), 1–13 | DOI | MR
[32] Serre J.-P., Corps locaux, Hermann, Paris, 1968 | MR
[33] Silverman J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, 2nd ed., Springer, Dordrecht, 2009 | DOI | MR | Zbl
[34] van der Put M., Reversat M., “Galois theory of $q$-difference equations”, Ann. Fac. Sci. Toulouse Math., 16 (2007), 665–718, arXiv: math.QA/0507098 | DOI | MR | Zbl
[35] van der Put M., Singer M. F., Galois theory of difference equations, Lecture Notes in Math., 1666, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl