@article{SIGMA_2015_11_a19,
author = {Hideshi Yamane},
title = {Long-Time {Asymptotics} for the {Defocusing} {Integrable} {Discrete} {Nonlinear} {Schr\"odinger} {Equation~II}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a19/}
}
TY - JOUR AU - Hideshi Yamane TI - Long-Time Asymptotics for the Defocusing Integrable Discrete Nonlinear Schrödinger Equation II JO - Symmetry, integrability and geometry: methods and applications PY - 2015 VL - 11 UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a19/ LA - en ID - SIGMA_2015_11_a19 ER -
Hideshi Yamane. Long-Time Asymptotics for the Defocusing Integrable Discrete Nonlinear Schrödinger Equation II. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a19/
[1] Ablowitz M. J., Prinari B., Trubatch A. D., Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Note Series, 302, Cambridge University Press, Cambridge, 2004
[2] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math., 137 (1993), 295–368, arXiv: math.AP/9201261 | DOI
[3] Kamvissis S., “On the long time behavior of the doubly infinite Toda lattice under initial data decaying at infinity”, Comm. Math. Phys., 153 (1993), 479–519 | DOI
[4] Kitaev A. V., “Caustics in $1+1$ integrable systems”, J. Math. Phys., 35 (1994), 2934–2954 | DOI
[5] Novokshenov V. Yu., “Asymptotic behavior as $t\to\infty$ of the solution of the Cauchy problem for a nonlinear differential-difference Schrödinger equation”, Differ. Equ., 21 (1985), 1288–1298
[6] Yamane H., “Long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation”, J. Math. Soc. Japan, 66 (2014), 765–803, arXiv: 1112.0919 | DOI