@article{SIGMA_2015_11_a18,
author = {Dra\v{z}en Adamovi\'c and Xianzu Lin and Antun Milas},
title = {Vertex {Algebras} $\mathcal{W}(p)^{A_m}$ and $\mathcal{W}(p)^{D_m}$ and {Constant} {Term} {Identities}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2015},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a18/}
}
TY - JOUR
AU - Dražen Adamović
AU - Xianzu Lin
AU - Antun Milas
TI - Vertex Algebras $\mathcal{W}(p)^{A_m}$ and $\mathcal{W}(p)^{D_m}$ and Constant Term Identities
JO - Symmetry, integrability and geometry: methods and applications
PY - 2015
VL - 11
UR - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a18/
LA - en
ID - SIGMA_2015_11_a18
ER -
%0 Journal Article
%A Dražen Adamović
%A Xianzu Lin
%A Antun Milas
%T Vertex Algebras $\mathcal{W}(p)^{A_m}$ and $\mathcal{W}(p)^{D_m}$ and Constant Term Identities
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a18/
%G en
%F SIGMA_2015_11_a18
Dražen Adamović; Xianzu Lin; Antun Milas. Vertex Algebras $\mathcal{W}(p)^{A_m}$ and $\mathcal{W}(p)^{D_m}$ and Constant Term Identities. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a18/
[1] Adamović D., “Classification of irreducible modules of certain subalgebras of free boson vertex algebra”, J. Algebra, 270 (2003), 115–132, arXiv: math.QA/0207155 | DOI
[2] Adamović D., Lin X., Milas A., “ADE subalgebras of the triplet vertex algebra $\mathcal{W}(p)$: $A$-series”, Commun. Contemp. Math., 15 (2013), 1350028, 30 pp., arXiv: 1212.5453 | DOI
[3] Adamović D., Lin X., Milas A., “ADE subalgebras of the triplet vertex algebra $\mathcal{W}(p)$: $D$-series”, Internat. J. Math., 25 (2014), 1450001, 34 pp., arXiv: 1304.5711 | DOI
[4] Adamović D., Milas A., “Logarithmic intertwining operators and $\mathcal{W}(2,2p-1)$ algebras”, J. Math. Phys., 48 (2007), 073503, 20 pp., arXiv: math.QA/0702081 | DOI
[5] Adamović D., Milas A., “On the triplet vertex algebra $\mathcal{W}(p)$”, Adv. Math., 217 (2008), 2664–2699, arXiv: 0707.1857 | DOI
[6] Adamović D., Milas A., “The $N=1$ triplet vertex operator superalgebras: twisted sector”, SIGMA, 4 (2008), 087, 24 pp., arXiv: 0806.3560 | DOI
[7] Adamović D., Milas A., “On $W$-algebras associated to $(2,p)$ minimal models and their representations”, Int. Math. Res. Not., 2010 (2010), 3896–3934, arXiv: 0908.4053 | DOI
[8] Adamović D., Milas A., “On $\mathcal{W}$-algebra extensions of $(2,p)$ minimal models: $p>3$”, J. Algebra, 344 (2011), 313–332, arXiv: 1101.0803 | DOI
[9] Adamović D., Milas A., “The structure of Zhu's algebras for certain $\mathcal{W}$-algebras”, Adv. Math., 227 (2011), 2425–2456, arXiv: 1006.5134 | DOI
[10] Dong C., Griess R. L. (Jr.), “Rank one lattice type vertex operator algebras and their automorphism groups”, J. Algebra, 208 (1998), 262–275, arXiv: q-alg/9710017 | DOI
[11] Forrester P. J., Warnaar S. O., “The importance of the Selberg integral”, Bull. Amer. Math. Soc., 45 (2008), 489–534, arXiv: 0710.3981 | DOI
[12] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988
[13] Ginsparg P., “Curiosities at $c=1$”, Nuclear Phys. B, 295 (1988), 153–170 | DOI
[14] Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI
[15] Zhu Y., “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc., 9 (1996), 237–302 | DOI