Irreducible Generic Gelfand–Tsetlin Modules of $\mathfrak{gl}(n)$
Symmetry, integrability and geometry: methods and applications, Tome 11 (2015) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide a classification and explicit bases of tableaux of all irreducible generic Gelfand–Tsetlin modules for the Lie algebra $\mathfrak{gl}(n)$.
Keywords: Gelfand–Tsetlin modules; Gelfand–Tsetlin basis; tableaux realization.
@article{SIGMA_2015_11_a17,
     author = {Vyacheslav Futorny and Dimitar Grantcharov and Luis Enrique Ramirez},
     title = {Irreducible {Generic} {Gelfand{\textendash}Tsetlin} {Modules} of $\mathfrak{gl}(n)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2015},
     volume = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a17/}
}
TY  - JOUR
AU  - Vyacheslav Futorny
AU  - Dimitar Grantcharov
AU  - Luis Enrique Ramirez
TI  - Irreducible Generic Gelfand–Tsetlin Modules of $\mathfrak{gl}(n)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2015
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a17/
LA  - en
ID  - SIGMA_2015_11_a17
ER  - 
%0 Journal Article
%A Vyacheslav Futorny
%A Dimitar Grantcharov
%A Luis Enrique Ramirez
%T Irreducible Generic Gelfand–Tsetlin Modules of $\mathfrak{gl}(n)$
%J Symmetry, integrability and geometry: methods and applications
%D 2015
%V 11
%U http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a17/
%G en
%F SIGMA_2015_11_a17
Vyacheslav Futorny; Dimitar Grantcharov; Luis Enrique Ramirez. Irreducible Generic Gelfand–Tsetlin Modules of $\mathfrak{gl}(n)$. Symmetry, integrability and geometry: methods and applications, Tome 11 (2015). http://geodesic.mathdoc.fr/item/SIGMA_2015_11_a17/

[1] Britten D. J., Lemire F. W., Futorny V. M., “Simple $A_2$-modules with a finite-dimensional weight space”, Comm. Algebra, 23 (1995), 467–510 | DOI

[2] Drozd Yu. A., Futorny V. M., Ovsienko S. A., “Harish–Chandra subalgebras and Gel'fand–Zetlin modules”, Finite-Dimensional Algebras and Related Topics (Ottawa, ON, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 424, Kluwer Acad. Publ., Dordrecht, 1994, 79–93 | DOI

[3] Drozd Yu. A., Ovsienko S. A., Futorny V. M., “Irreducible weighted $\mathrm{sl}(3)$-modules”, Funct. Anal. Appl., 23 (1989), 217–218 | DOI

[4] Drozd Y. A., Ovsienko S. A., Futorny V. M., “Gel'fand–Zetlin modules over Lie algebra $\mathrm{SL}(3)$”, Proceedings of the International Conference on Algebra (Novosibirsk, 1989), v. 2, Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 23–29 | DOI

[5] Fernando S. L., “Lie algebra modules with finite-dimensional weight spaces, I”, Trans. Amer. Math. Soc., 322 (1990), 757–781 | DOI

[6] Futorny V. M., “A generalization of Verma modules, and irreducible representations of the Lie algebra $\mathrm{sl}(3)$”, Ukrain. Math. J., 38 (1986), 422–427 | DOI

[7] Futorny V. M., Weight representations of semi-simple finite-dimensional Lie algebras, Ph. D. Thesis, Kiev University, 1986

[8] Futorny V. M., “Irreducible $\mathrm{sl}(3)$-modules with infinite-dimensional weight subspaces”, Ukrain. Math. J., 41 (1989), 856–859 | DOI

[9] Futorny V. M., “Weighted $\mathrm{sl}(3)$-modules generated by semiprimitive elements”, Ukrain. Math. J., 43 (1991), 250–254 | DOI

[10] Futorny V. M., Grantcharov D., Ramirez L. E., Classification of irreducible Gelfand–Tsetlin modules for $\mathfrak{sl}(3)$, in preparation

[11] Futorny V. M., Ovsienko S. A., “Fibers of characters in Gel'fand–Tsetlin categories”, Trans. Amer. Math. Soc., 366 (2014), 4173–4208, arXiv: math.RT/0610071 | DOI

[12] Gel'fand I. M., Tsetlin M. L., “Finite-dimensional representations of the group of unimodular matrices”, Dokl. Akad. Nauk USSR, 71 (1950), 825–828

[13] Graev M. I., “Infinite-dimensional representations of the Lie algebra $\mathfrak{gl}(n,\mathbb{C})$ related to complex analogs of the Gelfand–Tsetlin patterns and general hypergeometric functions on the Lie group $\mathrm{GL}(n,\mathbb{C})$”, Acta Appl. Math., 81 (2004), 93–120 | DOI

[14] Graev M. I., “A continuous analogue of Gelfand–Tsetlin schemes and a realization of the principal series of irreducible unitary representations of the group $\rm{GL}(n,\mathbb{C})$ in the space of functions on the variety of these schemes”, Dokl. Math., 75 (2007), 31–35 | DOI

[15] Kostant B., Wallach N., “Gelfand–Zeitlin theory from the perspective of classical mechanics, I”, Studies in Lie Theory, Progr. Math., 243, Birkhäuser Boston, Boston, MA, 2006, 319–364, arXiv: math.SG/0408342 | DOI

[16] Kostant B., Wallach N., “Gelfand–Zeitlin theory from the perspective of classical mechanics, II”, The Unity of Mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 387–420, arXiv: math.SG/0501387 | DOI

[17] Mathieu O., “Classification of irreducible weight modules”, Ann. Inst. Fourier (Grenoble), 50 (2000), 537–592 | DOI

[18] Mazorchuk V., “On categories of Gelfand–Zetlin modules”, Noncommutative Structures in Mathematics and Physics (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 22, Kluwer Acad. Publ., Dordrecht, 2001, 299–307 | DOI

[19] Nazarov M., Tarasov V., “Yangians and Gelfand–Zetlin bases”, Publ. Res. Inst. Math. Sci., 30 (1994), 459–478, arXiv: hep-th/9302102 | DOI

[20] Ramirez L. E., “Combinatorics of irreducible Gelfand–Tsetlin $\mathfrak{sl}(3)$-modules”, Algebra Discrete Math., 14 (2012), 276–296

[21] Ramirez L. E., Classificação dos $\mathfrak{sl}(3)$-módulos de Gelfand–Tsetlin irredutíveis, Ph. D. Thesis, Universidade de São Paulo, 2013

[22] Vinberg E. B., “Some commutative subalgebras of a universal enveloping algebra”, Math. USSR Izvestiya, 36 (1991), 1–22 | DOI

[23] Zhelobenko D. P., Compact Lie groups and their representations, Translations of Mathematical Monographs, 40, Amer. Math. Soc., Providence, R.I., 1973